Ask AI

Source code for dagster._core.definitions.sensor_definition

import functools
import inspect
import logging
from collections import defaultdict
from contextlib import ExitStack
from enum import Enum
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Iterable,
    Iterator,
    List,
    Mapping,
    NamedTuple,
    Optional,
    Sequence,
    Set,
    Tuple,
    Type,
    TypeVar,
    Union,
    cast,
)

from typing_extensions import TypeAlias

import dagster._check as check
from dagster._annotations import deprecated, deprecated_param, public
from dagster._core.decorator_utils import get_function_params
from dagster._core.definitions.asset_check_evaluation import AssetCheckEvaluation
from dagster._core.definitions.asset_selection import (
    AssetCheckKeysSelection,
    AssetSelection,
    CoercibleToAssetSelection,
    KeysAssetSelection,
)
from dagster._core.definitions.declarative_automation.serialized_objects import (
    AutomationConditionEvaluation,
)
from dagster._core.definitions.dynamic_partitions_request import (
    AddDynamicPartitionsRequest,
    DeleteDynamicPartitionsRequest,
)
from dagster._core.definitions.events import AssetMaterialization, AssetObservation
from dagster._core.definitions.instigation_logger import InstigationLogger
from dagster._core.definitions.job_definition import JobDefinition
from dagster._core.definitions.metadata import normalize_metadata
from dagster._core.definitions.metadata.metadata_value import MetadataValue
from dagster._core.definitions.partition import CachingDynamicPartitionsLoader
from dagster._core.definitions.resource_annotation import get_resource_args
from dagster._core.definitions.resource_definition import Resources
from dagster._core.definitions.run_request import (
    DagsterRunReaction,
    RunRequest,
    SensorResult,
    SkipReason,
)
from dagster._core.definitions.scoped_resources_builder import ScopedResourcesBuilder
from dagster._core.definitions.target import (
    ANONYMOUS_ASSET_JOB_PREFIX,
    AutomationTarget,
    ExecutableDefinition,
)
from dagster._core.definitions.utils import check_valid_name
from dagster._core.errors import (
    DagsterInvalidDefinitionError,
    DagsterInvalidInvocationError,
    DagsterInvalidSubsetError,
    DagsterInvariantViolationError,
)
from dagster._core.instance import DagsterInstance
from dagster._core.instance.ref import InstanceRef
from dagster._core.storage.dagster_run import DagsterRun
from dagster._serdes import whitelist_for_serdes
from dagster._time import get_current_datetime
from dagster._utils import IHasInternalInit, normalize_to_repository
from dagster._utils.merger import merge_dicts
from dagster._utils.tags import normalize_tags
from dagster._utils.warnings import deprecation_warning, normalize_renamed_param

if TYPE_CHECKING:
    from dagster import ResourceDefinition
    from dagster._core.definitions.assets import AssetsDefinition
    from dagster._core.definitions.definitions_class import Definitions
    from dagster._core.definitions.repository_definition import RepositoryDefinition
    from dagster._core.definitions.unresolved_asset_job_definition import (
        UnresolvedAssetJobDefinition,
    )
    from dagster._core.remote_representation.origin import CodeLocationOrigin


@whitelist_for_serdes
class DefaultSensorStatus(Enum):
    RUNNING = "RUNNING"
    STOPPED = "STOPPED"


@whitelist_for_serdes
class SensorType(Enum):
    STANDARD = "STANDARD"
    RUN_STATUS = "RUN_STATUS"
    ASSET = "ASSET"
    MULTI_ASSET = "MULTI_ASSET"
    FRESHNESS_POLICY = "FRESHNESS_POLICY"
    AUTO_MATERIALIZE = "AUTO_MATERIALIZE"
    AUTOMATION = "AUTOMATION"
    UNKNOWN = "UNKNOWN"

    @property
    def is_handled_by_asset_daemon(self) -> bool:
        # only the `AUTO_MATERIALIZE` sensor type is handled by the daemon
        return self == SensorType.AUTO_MATERIALIZE


DEFAULT_SENSOR_DAEMON_INTERVAL = 30


[docs] @deprecated_param( param="last_completion_time", breaking_version="2.0", additional_warn_text="Use `last_tick_completion_time` instead.", ) class SensorEvaluationContext: """The context object available as the argument to the evaluation function of a :py:class:`dagster.SensorDefinition`. Users should not instantiate this object directly. To construct a `SensorEvaluationContext` for testing purposes, use :py:func:`dagster. build_sensor_context`. Attributes: instance_ref (Optional[InstanceRef]): The serialized instance configured to run the schedule cursor (Optional[str]): The cursor, passed back from the last sensor evaluation via the cursor attribute of SkipReason and RunRequest last_tick_completion_time (float): The last time that the sensor was evaluated (UTC). last_run_key (str): DEPRECATED The run key of the RunRequest most recently created by this sensor. Use the preferred `cursor` attribute instead. log_key (Optional[List[str]]): The log key to use for this sensor tick. repository_name (Optional[str]): The name of the repository that the sensor belongs to. repository_def (Optional[RepositoryDefinition]): The repository or that the sensor belongs to. If needed by the sensor top-level resource definitions will be pulled from this repository. You can provide either this or `definitions`. instance (Optional[DagsterInstance]): The deserialized instance can also be passed in directly (primarily useful in testing contexts). definitions (Optional[Definitions]): `Definitions` object that the sensor is defined in. If needed by the sensor, top-level resource definitions will be pulled from these definitions. You can provide either this or `repository_def`. resources (Optional[Dict[str, Any]]): A dict of resource keys to resource definitions to be made available during sensor execution. last_sensor_start_time (float): The last time that the sensor was started (UTC). code_location_origin (Optional[CodeLocationOrigin]): The code location that the sensor is in. Example: .. code-block:: python from dagster import sensor, SensorEvaluationContext @sensor def the_sensor(context: SensorEvaluationContext): ... """ def __init__( self, instance_ref: Optional[InstanceRef], last_tick_completion_time: Optional[float] = None, last_run_key: Optional[str] = None, cursor: Optional[str] = None, log_key: Optional[Sequence[str]] = None, repository_name: Optional[str] = None, repository_def: Optional["RepositoryDefinition"] = None, instance: Optional[DagsterInstance] = None, sensor_name: Optional[str] = None, resources: Optional[Mapping[str, "ResourceDefinition"]] = None, definitions: Optional["Definitions"] = None, last_sensor_start_time: Optional[float] = None, code_location_origin: Optional["CodeLocationOrigin"] = None, # deprecated param last_completion_time: Optional[float] = None, ): from dagster._core.definitions.definitions_class import Definitions from dagster._core.definitions.repository_definition import RepositoryDefinition from dagster._core.remote_representation.origin import CodeLocationOrigin self._exit_stack = ExitStack() self._instance_ref = check.opt_inst_param(instance_ref, "instance_ref", InstanceRef) self._last_tick_completion_time = normalize_renamed_param( last_tick_completion_time, "last_tick_completion_time", last_completion_time, "last_completion_time", ) self._last_run_key = check.opt_str_param(last_run_key, "last_run_key") self._last_sensor_start_time = check.opt_float_param( last_sensor_start_time, "last_sensor_start_time" ) self._cursor = check.opt_str_param(cursor, "cursor") self._repository_name = check.opt_str_param(repository_name, "repository_name") self._repository_def = normalize_to_repository( check.opt_inst_param(definitions, "definitions", Definitions), check.opt_inst_param(repository_def, "repository_def", RepositoryDefinition), error_on_none=False, ) self._code_location_origin = check.opt_inst_param( code_location_origin, "code_location_origin", CodeLocationOrigin ) self._instance = check.opt_inst_param(instance, "instance", DagsterInstance) self._sensor_name = sensor_name # Wait to set resources unless they're accessed self._resource_defs = resources self._resources = None self._cm_scope_entered = False self._log_key = log_key # Kept for backwards compatibility if the sensor log key is not passed into the # sensor evaluation. if not self._log_key and repository_name and sensor_name: self._log_key = [ repository_name, sensor_name, get_current_datetime().strftime("%Y%m%d_%H%M%S"), ] self._logger: Optional[InstigationLogger] = None self._cursor_updated = False def __enter__(self) -> "SensorEvaluationContext": self._cm_scope_entered = True return self def __exit__(self, *exc) -> None: self._exit_stack.close() self._logger = None @property def resource_defs(self) -> Optional[Mapping[str, "ResourceDefinition"]]: return self._resource_defs @property def sensor_name(self) -> str: return check.not_none(self._sensor_name, "Only valid when sensor name provided") @functools.cached_property def caching_dynamic_partitions_loader(self): return CachingDynamicPartitionsLoader(self.instance) if self.instance_ref else None def merge_resources(self, resources_dict: Mapping[str, Any]) -> "SensorEvaluationContext": """Merge the specified resources into this context. This method is intended to be used by the Dagster framework, and should not be called by user code. Args: resources_dict (Mapping[str, Any]): The resources to replace in the context. """ check.invariant( self._resources is None, "Cannot merge resources in context that has been initialized." ) from dagster._core.execution.build_resources import wrap_resources_for_execution return SensorEvaluationContext( instance_ref=self._instance_ref, last_tick_completion_time=self._last_tick_completion_time, last_run_key=self._last_run_key, cursor=self._cursor, log_key=self._log_key, repository_name=self._repository_name, repository_def=self._repository_def, instance=self._instance, sensor_name=self._sensor_name, resources={ **(self._resource_defs or {}), **wrap_resources_for_execution(resources_dict), }, last_sensor_start_time=self._last_sensor_start_time, code_location_origin=self.code_location_origin, ) @public @property def resources(self) -> Resources: """Resources: A mapping from resource key to instantiated resources for this sensor.""" from dagster._core.definitions.scoped_resources_builder import IContainsGenerator from dagster._core.execution.build_resources import build_resources if not self._resources: """ This is similar to what we do in e.g. the op context - we set up a resource building context manager, and immediately enter it. This is so that in cases where a user is not using any context-manager based resources, they don't need to enter this SensorEvaluationContext themselves. For example: my_sensor(build_sensor_context(resources={"my_resource": my_non_cm_resource}) will work ok, but for a CM resource we must do with build_sensor_context(resources={"my_resource": my_cm_resource}) as context: my_sensor(context) """ # Early exit if no resources are defined. This skips unnecessary initialization # entirely. This allows users to run user code servers in cases where they # do not have access to the instance if they use a subset of features do # that do not require instance access. In this case, if they do not use # resources on sensors they do not require the instance, so we do not # instantiate it # # Tracking at https://github.com/dagster-io/dagster/issues/14345 if not self._resource_defs: self._resources = ScopedResourcesBuilder.build_empty() return self._resources instance = self.instance if self._instance or self._instance_ref else None resources_cm = build_resources(resources=self._resource_defs or {}, instance=instance) self._resources = self._exit_stack.enter_context(resources_cm) if isinstance(self._resources, IContainsGenerator) and not self._cm_scope_entered: self._exit_stack.close() raise DagsterInvariantViolationError( "At least one provided resource is a generator, but attempting to access" " resources outside of context manager scope. You can use the following syntax" " to open a context manager: `with build_schedule_context(...) as context:`" ) return self._resources @public @property def instance(self) -> DagsterInstance: """DagsterInstance: The current DagsterInstance.""" # self._instance_ref should only ever be None when this SensorEvaluationContext was # constructed under test. if not self._instance: if not self._instance_ref: raise DagsterInvariantViolationError( "Attempted to initialize dagster instance, but no instance reference was" " provided." ) self._instance = self._exit_stack.enter_context( DagsterInstance.from_ref(self._instance_ref) ) return cast(DagsterInstance, self._instance) @property def instance_ref(self) -> Optional[InstanceRef]: return self._instance_ref @public @property def last_tick_completion_time(self) -> Optional[float]: """Optional[float]: Timestamp representing the last time this sensor completed an evaluation.""" return self._last_tick_completion_time @deprecated( breaking_version="2.0", additional_warn_text="Use last_tick_completion_time instead." ) @property def last_completion_time(self) -> Optional[float]: """Optional[float]: Timestamp representing the last time this sensor completed an evaluation. Legacy alias of last_tick_completion_time, renamed for clarity.""" return self._last_tick_completion_time @public @property def last_sensor_start_time(self) -> Optional[float]: """Optional[float]: Timestamp representing the last time this sensor was started. Can be used in concert with last_tick_completion_time to determine if this is the first tick since the sensor was started. """ return self._last_sensor_start_time @public @property def is_first_tick_since_sensor_start(self) -> bool: """Flag representing if this is the first tick since the sensor was started.""" return not self._last_tick_completion_time or ( self._last_sensor_start_time is not None and self._last_sensor_start_time > self._last_tick_completion_time ) @public @property def last_run_key(self) -> Optional[str]: """Optional[str]: The run key supplied to the most recent RunRequest produced by this sensor.""" return self._last_run_key @public @property def cursor(self) -> Optional[str]: """The cursor value for this sensor, which was set in an earlier sensor evaluation.""" return self._cursor
[docs] @public def update_cursor(self, cursor: Optional[str]) -> None: """Updates the cursor value for this sensor, which will be provided on the context for the next sensor evaluation. This can be used to keep track of progress and avoid duplicate work across sensor evaluations. Args: cursor (Optional[str]): """ self._cursor = check.opt_str_param(cursor, "cursor") self._cursor_updated = True
@property def cursor_updated(self) -> bool: return self._cursor_updated @public @property def repository_name(self) -> Optional[str]: """Optional[str]: The name of the repository that this sensor resides in.""" return self._repository_name @public @property def repository_def(self) -> Optional["RepositoryDefinition"]: """Optional[RepositoryDefinition]: The RepositoryDefinition that this sensor resides in.""" return self._repository_def @property def code_location_origin(self) -> Optional["CodeLocationOrigin"]: """Optional[CodeLocationOrigin]: The CodeLocation that this sensor resides in.""" return self._code_location_origin @property def log(self) -> logging.Logger: if self._logger: return self._logger if not self._instance_ref: self._logger = self._exit_stack.enter_context( InstigationLogger( self._log_key, repository_name=self._repository_name, instigator_name=self._sensor_name, ) ) return cast(logging.Logger, self._logger) self._logger = self._exit_stack.enter_context( InstigationLogger( self._log_key, self.instance, repository_name=self._repository_name, instigator_name=self._sensor_name, ) ) return cast(logging.Logger, self._logger) def has_captured_logs(self): return self._logger and self._logger.has_captured_logs() @property def log_key(self) -> Optional[Sequence[str]]: return self._log_key
RawSensorEvaluationFunctionReturn = Union[ Iterator[Union[SkipReason, RunRequest, DagsterRunReaction, SensorResult]], Sequence[RunRequest], SkipReason, RunRequest, DagsterRunReaction, SensorResult, None, ] RawSensorEvaluationFunction: TypeAlias = Callable[..., RawSensorEvaluationFunctionReturn] SensorEvaluationFunction: TypeAlias = Callable[ ..., Sequence[Union[None, SensorResult, SkipReason, RunRequest]] ] def get_context_param_name(fn: Callable[..., Any]) -> Optional[str]: """Determines the sensor's context parameter name by excluding all resource parameters.""" resource_params = {param.name for param in get_resource_args(fn)} return next( (param.name for param in get_function_params(fn) if param.name not in resource_params), None ) def validate_and_get_resource_dict( resources: Resources, sensor_name: str, required_resource_keys: Set[str] ) -> Dict[str, Any]: """Validates that the context has all the required resources and returns a dictionary of resource key to resource object. """ for k in required_resource_keys: if not hasattr(resources, k): raise DagsterInvalidDefinitionError( f"Resource with key '{k}' required by sensor '{sensor_name}' was not provided." ) return {k: resources.original_resource_dict.get(k) for k in required_resource_keys} def _check_dynamic_partitions_requests( dynamic_partitions_requests: Sequence[ Union[AddDynamicPartitionsRequest, DeleteDynamicPartitionsRequest] ], ) -> None: req_keys_to_add_by_partitions_def_name = defaultdict(set) req_keys_to_delete_by_partitions_def_name = defaultdict(set) for req in dynamic_partitions_requests: duplicate_req_keys_to_delete = req_keys_to_delete_by_partitions_def_name.get( req.partitions_def_name, set() ).intersection(req.partition_keys) duplicate_req_keys_to_add = req_keys_to_add_by_partitions_def_name.get( req.partitions_def_name, set() ).intersection(req.partition_keys) if isinstance(req, AddDynamicPartitionsRequest): if duplicate_req_keys_to_delete: raise DagsterInvariantViolationError( "Dynamic partition requests cannot contain both add and delete requests for" " the same partition keys.Invalid request: partitions_def_name" f" '{req.partitions_def_name}', partition_keys: {duplicate_req_keys_to_delete}" ) elif duplicate_req_keys_to_add: raise DagsterInvariantViolationError( "Cannot request to add duplicate dynamic partition keys: \npartitions_def_name" f" '{req.partitions_def_name}', partition_keys: {duplicate_req_keys_to_add}" ) req_keys_to_add_by_partitions_def_name[req.partitions_def_name].update( req.partition_keys ) elif isinstance(req, DeleteDynamicPartitionsRequest): if duplicate_req_keys_to_delete: raise DagsterInvariantViolationError( "Cannot request to add duplicate dynamic partition keys: \npartitions_def_name" f" '{req.partitions_def_name}', partition_keys:" f" {req_keys_to_add_by_partitions_def_name}" ) elif duplicate_req_keys_to_add: raise DagsterInvariantViolationError( "Dynamic partition requests cannot contain both add and delete requests for" " the same partition keys.Invalid request: partitions_def_name" f" '{req.partitions_def_name}', partition_keys: {duplicate_req_keys_to_add}" ) req_keys_to_delete_by_partitions_def_name[req.partitions_def_name].update( req.partition_keys ) else: check.failed(f"Unexpected dynamic partition request type: {req}") def split_run_requests( run_requests: Sequence[RunRequest], ) -> Tuple[Sequence[RunRequest], Sequence[RunRequest]]: """Splits RunRequests into those that must be handled by the backfill daemon and those that can be handled by launching a single run. """ run_requests_for_backfill_daemon = [] run_requests_for_single_runs = [] for run_request in run_requests: if run_request.requires_backfill_daemon(): run_requests_for_backfill_daemon.append(run_request) else: run_requests_for_single_runs.append(run_request) return run_requests_for_backfill_daemon, run_requests_for_single_runs
[docs] class SensorDefinition(IHasInternalInit): """Define a sensor that initiates a set of runs based on some external state. Args: evaluation_fn (Callable[[SensorEvaluationContext]]): The core evaluation function for the sensor, which is run at an interval to determine whether a run should be launched or not. Takes a :py:class:`~dagster.SensorEvaluationContext`. This function must return a generator, which must yield either a single SkipReason or one or more RunRequest objects. name (Optional[str]): The name of the sensor to create. Defaults to name of evaluation_fn minimum_interval_seconds (Optional[int]): The minimum number of seconds that will elapse between sensor evaluations. description (Optional[str]): A human-readable description of the sensor. job (Optional[GraphDefinition, JobDefinition, UnresolvedAssetJob]): The job to execute when this sensor fires. jobs (Optional[Sequence[GraphDefinition, JobDefinition, UnresolvedAssetJob]]): (experimental) A list of jobs to execute when this sensor fires. default_status (DefaultSensorStatus): Whether the sensor starts as running or not. The default status can be overridden from the Dagster UI or via the GraphQL API. asset_selection (Optional[Union[str, Sequence[str], Sequence[AssetKey], Sequence[Union[AssetsDefinition, SourceAsset]], AssetSelection]]): (Experimental) an asset selection to launch a run for if the sensor condition is met. This can be provided instead of specifying a job. tags (Optional[Mapping[str, str]]): A set of key-value tags that annotate the sensor and can be used for searching and filtering in the UI. metadata (Optional[Mapping[str, object]]): A set of metadata entries that annotate the sensor. Values will be normalized to typed `MetadataValue` objects. Not currently shown in the UI but available at runtime via `SensorEvaluationContext.repository_def.get_sensor_def(<name>).metadata`. target (Optional[Union[CoercibleToAssetSelection, AssetsDefinition, JobDefinition, UnresolvedAssetJobDefinition]]): The target that the sensor will execute. It can take :py:class:`~dagster.AssetSelection` objects and anything coercible to it (e.g. `str`, `Sequence[str]`, `AssetKey`, `AssetsDefinition`). It can also accept :py:class:`~dagster.JobDefinition` (a function decorated with `@job` is an instance of `JobDefinition`) and `UnresolvedAssetJobDefinition` (the return value of :py:func:`~dagster.define_asset_job`) objects. This is an experimental parameter that will replace `job`, `jobs`, and `asset_selection`. """ def with_updated_jobs(self, new_jobs: Sequence[ExecutableDefinition]) -> "SensorDefinition": """Returns a copy of this sensor with the jobs replaced. Args: job (ExecutableDefinition): The job that should execute when this schedule runs. """ return SensorDefinition.dagster_internal_init( name=self.name, evaluation_fn=self._raw_fn, minimum_interval_seconds=self.minimum_interval_seconds, description=self.description, job_name=None, # if original init was passed job name, was resolved to a job jobs=new_jobs if len(new_jobs) > 1 else None, job=new_jobs[0] if len(new_jobs) == 1 else None, default_status=self.default_status, asset_selection=self.asset_selection, required_resource_keys=self._raw_required_resource_keys, tags=self._tags, metadata=self._metadata, target=None, ) def with_updated_job(self, new_job: ExecutableDefinition) -> "SensorDefinition": """Returns a copy of this sensor with the job replaced. Args: job (ExecutableDefinition): The job that should execute when this schedule runs. """ return self.with_updated_jobs([new_job]) def __init__( self, name: Optional[str] = None, *, evaluation_fn: Optional[RawSensorEvaluationFunction] = None, job_name: Optional[str] = None, minimum_interval_seconds: Optional[int] = None, description: Optional[str] = None, job: Optional[ExecutableDefinition] = None, jobs: Optional[Sequence[ExecutableDefinition]] = None, default_status: DefaultSensorStatus = DefaultSensorStatus.STOPPED, asset_selection: Optional[CoercibleToAssetSelection] = None, required_resource_keys: Optional[Set[str]] = None, tags: Optional[Mapping[str, str]] = None, metadata: Optional[Mapping[str, object]] = None, target: Optional[ Union[ "CoercibleToAssetSelection", "AssetsDefinition", "JobDefinition", "UnresolvedAssetJobDefinition", ] ] = None, ): from dagster._config.pythonic_config import validate_resource_annotated_function if evaluation_fn is None: raise DagsterInvalidDefinitionError("Must provide evaluation_fn to SensorDefinition.") if ( sum( [ int(target is not None), int(job is not None), int(job_name is not None), int(jobs is not None), int(asset_selection is not None), ] ) > 1 ): raise DagsterInvalidDefinitionError( "Attempted to provide more than one of 'job', 'jobs', 'job_name', and " "'asset_selection' params to SensorDefinition. Must provide only one." ) if target: targets = [ AutomationTarget.from_coercible( target, automation_name=check.not_none( name, "If you specify target you must specify sensor name" ), ) ] elif job: targets = [AutomationTarget.from_coercible(job)] elif job_name: targets = [ AutomationTarget(resolvable_to_job=check.str_param(job_name, "job_name")), ] elif jobs: targets = [AutomationTarget.from_coercible(job) for job in jobs] else: targets = [] if name: self._name = check_valid_name(name) else: self._name = evaluation_fn.__name__ self._raw_fn: RawSensorEvaluationFunction = check.callable_param( evaluation_fn, "evaluation_fn" ) self._evaluation_fn: Union[ SensorEvaluationFunction, Callable[ [SensorEvaluationContext], List[Union[SkipReason, RunRequest, DagsterRunReaction]], ], ] = wrap_sensor_evaluation(self._name, evaluation_fn) self._min_interval = check.opt_int_param( minimum_interval_seconds, "minimum_interval_seconds", DEFAULT_SENSOR_DAEMON_INTERVAL ) self._description = check.opt_str_param(description, "description") self._targets: Sequence[AutomationTarget] = check.opt_list_param( targets, "targets", AutomationTarget ) self._default_status = check.inst_param( default_status, "default_status", DefaultSensorStatus ) self._asset_selection = ( AssetSelection.from_coercible(asset_selection) if asset_selection is not None else None ) validate_resource_annotated_function(self._raw_fn) resource_arg_names: Set[str] = {arg.name for arg in get_resource_args(self._raw_fn)} check.param_invariant( len(required_resource_keys or []) == 0 or len(resource_arg_names) == 0, "Cannot specify resource requirements in both @sensor decorator and as arguments to" " the decorated function", ) self._raw_required_resource_keys = check.opt_set_param( required_resource_keys, "required_resource_keys", of_type=str ) self._required_resource_keys = self._raw_required_resource_keys or resource_arg_names self._tags = normalize_tags(tags) self._metadata = normalize_metadata( check.opt_mapping_param(metadata, "metadata", key_type=str) # type: ignore # (pyright bug) ) @staticmethod def dagster_internal_init( *, name: Optional[str], evaluation_fn: Optional[RawSensorEvaluationFunction], job_name: Optional[str], minimum_interval_seconds: Optional[int], description: Optional[str], job: Optional[ExecutableDefinition], jobs: Optional[Sequence[ExecutableDefinition]], default_status: DefaultSensorStatus, asset_selection: Optional[CoercibleToAssetSelection], required_resource_keys: Optional[Set[str]], tags: Optional[Mapping[str, str]], metadata: Optional[Mapping[str, object]], target: Optional[ Union[ "CoercibleToAssetSelection", "AssetsDefinition", "JobDefinition", "UnresolvedAssetJobDefinition", ] ], ) -> "SensorDefinition": return SensorDefinition( name=name, evaluation_fn=evaluation_fn, job_name=job_name, minimum_interval_seconds=minimum_interval_seconds, description=description, job=job, jobs=jobs, default_status=default_status, asset_selection=asset_selection, required_resource_keys=required_resource_keys, tags=tags, metadata=metadata, target=target, ) def __call__(self, *args, **kwargs) -> RawSensorEvaluationFunctionReturn: context_param_name_if_present = get_context_param_name(self._raw_fn) context = get_or_create_sensor_context(self._raw_fn, *args, **kwargs) context_param = ( {context_param_name_if_present: context} if context_param_name_if_present else {} ) resources = validate_and_get_resource_dict( context.resources, self.name, self._required_resource_keys ) return self._raw_fn(**context_param, **resources) @public @property def required_resource_keys(self) -> Set[str]: """Set[str]: The set of keys for resources that must be provided to this sensor.""" return self._required_resource_keys @public @property def name(self) -> str: """str: The name of this sensor.""" return self._name @public @property def description(self) -> Optional[str]: """Optional[str]: A description for this sensor.""" return self._description @public @property def minimum_interval_seconds(self) -> Optional[int]: """Optional[int]: The minimum number of seconds between sequential evaluations of this sensor.""" return self._min_interval @property def targets(self) -> Sequence[AutomationTarget]: return self._targets @public @property def job(self) -> Union[JobDefinition, "UnresolvedAssetJobDefinition"]: """Union[GraphDefinition, JobDefinition, UnresolvedAssetJobDefinition]: The job that is targeted by this schedule. """ if self._targets: if len(self._targets) == 1: if self._targets[0].has_job_def: return self._targets[0].job_def else: raise DagsterInvalidDefinitionError( "Job property not available when target is defined by a string job name." ) elif len(self._targets) > 1: raise DagsterInvalidDefinitionError( "Job property not available when SensorDefinition has multiple jobs." ) raise DagsterInvalidDefinitionError("No job was provided to SensorDefinition.") @public @property def jobs(self) -> List[ExecutableDefinition]: """List[Union[GraphDefinition, JobDefinition, UnresolvedAssetJobDefinition]]: A list of jobs that are targeted by this schedule. """ targets = [t for t in self._targets if t.has_job_def] if not targets: raise DagsterInvalidDefinitionError("No job was provided to SensorDefinition.") return [t.job_def for t in targets] @property def has_jobs(self) -> bool: return bool(self._targets) @property def tags(self) -> Mapping[str, str]: """Mapping[str, str]: The tags for this sensor.""" return self._tags @property def metadata(self) -> Mapping[str, MetadataValue]: """Mapping[str, str]: The metadata for this sensor.""" return self._metadata @property def sensor_type(self) -> SensorType: return SensorType.STANDARD def evaluate_tick(self, context: "SensorEvaluationContext") -> "SensorExecutionData": """Evaluate sensor using the provided context. Args: context (SensorEvaluationContext): The context with which to evaluate this sensor. Returns: SensorExecutionData: Contains list of run requests, or skip message if present. """ context = check.inst_param(context, "context", SensorEvaluationContext) result = self._evaluation_fn(context) skip_message: Optional[str] = None run_requests: List[RunRequest] = [] dagster_run_reactions: List[DagsterRunReaction] = [] dynamic_partitions_requests: Optional[ Sequence[Union[AddDynamicPartitionsRequest, DeleteDynamicPartitionsRequest]] ] = [] updated_cursor = context.cursor asset_events = [] automation_condition_evaluations = [] if not result or result == [None]: skip_message = "Sensor function returned an empty result" elif len(result) == 1: item = check.inst(result[0], (SkipReason, RunRequest, DagsterRunReaction, SensorResult)) if isinstance(item, SensorResult): run_requests = list(item.run_requests) if item.run_requests else [] skip_message = ( item.skip_reason.skip_message if item.skip_reason else (None if run_requests else "Sensor function returned an empty result") ) _check_dynamic_partitions_requests( item.dynamic_partitions_requests or [], ) dynamic_partitions_requests = item.dynamic_partitions_requests or [] if context.cursor_updated and item.cursor: raise DagsterInvariantViolationError( "SensorResult.cursor cannot be set if context.update_cursor() was called." ) elif item.cursor: updated_cursor = item.cursor # overwrite value set from context above asset_events = item.asset_events automation_condition_evaluations = item.automation_condition_evaluations elif isinstance(item, RunRequest): run_requests = [item] elif isinstance(item, SkipReason): skip_message = item.skip_message if isinstance(item, SkipReason) else None elif isinstance(item, DagsterRunReaction): dagster_run_reactions = ( [cast(DagsterRunReaction, item)] if isinstance(item, DagsterRunReaction) else [] ) else: check.failed(f"Unexpected type {type(item)} in sensor result") else: if any(isinstance(item, SensorResult) for item in result): check.failed( "When a SensorResult is returned from a sensor, it must be the only object" " returned." ) check.is_list(result, (SkipReason, RunRequest, DagsterRunReaction)) has_skip = any(map(lambda x: isinstance(x, SkipReason), result)) run_requests = [item for item in result if isinstance(item, RunRequest)] dagster_run_reactions = [ item for item in result if isinstance(item, DagsterRunReaction) ] if has_skip: if len(run_requests) > 0: check.failed( "Expected a single SkipReason or one or more RunRequests: received both " "RunRequest and SkipReason" ) elif len(dagster_run_reactions) > 0: check.failed( "Expected a single SkipReason or one or more DagsterRunReaction: " "received both DagsterRunReaction and SkipReason" ) else: check.failed("Expected a single SkipReason: received multiple SkipReasons") _check_dynamic_partitions_requests(dynamic_partitions_requests) run_requests_for_backfill_daemon, run_requests_for_single_runs = split_run_requests( run_requests ) resolved_run_requests = [ run_request.with_replaced_attrs( tags=merge_dicts(run_request.tags, DagsterRun.tags_for_sensor(self)), ) for run_request in [ *self.resolve_run_requests( run_requests_for_single_runs, context, self._asset_selection, dynamic_partitions_requests, ), *self.validate_backfill_requests( run_requests_for_backfill_daemon, context, ), ] ] return SensorExecutionData( resolved_run_requests, skip_message, updated_cursor, dagster_run_reactions, log_key=context.log_key if context.has_captured_logs() else None, dynamic_partitions_requests=dynamic_partitions_requests, asset_events=asset_events, automation_condition_evaluations=automation_condition_evaluations, ) def resolve_run_requests( self, run_requests: Sequence[RunRequest], context: SensorEvaluationContext, asset_selection: Optional[AssetSelection], dynamic_partitions_requests: Sequence[ Union[AddDynamicPartitionsRequest, DeleteDynamicPartitionsRequest] ], ) -> Sequence[RunRequest]: def _get_repo_job_by_name(context: SensorEvaluationContext, job_name: str) -> JobDefinition: if context.repository_def is None: raise DagsterInvariantViolationError( "Must provide repository def to build_sensor_context when yielding partitioned" " run requests" ) return context.repository_def.get_job(job_name) has_multiple_targets = len(self._targets) > 1 target_names = [target.job_name for target in self._targets] if run_requests and len(self._targets) == 0 and not self._asset_selection: raise Exception( f"Error in sensor {self._name}: Sensor evaluation function returned a RunRequest " "for a sensor lacking a specified target (job_name, job, or jobs). Targets " "can be specified by providing job, jobs, or job_name to the @sensor " "decorator." ) if asset_selection is not None: run_requests = [ *_run_requests_with_base_asset_jobs(run_requests, context, asset_selection) ] # Run requests may contain an invalid target, or a partition key that does not exist. # We will resolve these run requests, applying the target and partition config/tags. resolved_run_requests = [] for run_request in run_requests: if run_request.job_name is None and has_multiple_targets: raise Exception( f"Error in sensor {self._name}: Sensor returned a RunRequest that did not" " specify job_name for the requested run. Expected one of:" f" {target_names}" ) elif ( run_request.job_name and run_request.job_name not in target_names and not asset_selection ): raise Exception( f"Error in sensor {self._name}: Sensor returned a RunRequest with job_name " f"{run_request.job_name}. Expected one of: {target_names}" ) if run_request.partition_key and not run_request.has_resolved_partition(): if run_request.asset_selection: asset_graph = check.not_none(context.repository_def).asset_graph partitions_defs = { asset_graph.get(k).partitions_def for k in run_request.asset_selection } defined_partitions_defs = {pd for pd in partitions_defs if pd is not None} check.invariant( len({pd for pd in defined_partitions_defs if pd}) == 1, "All selected assets must have the same or no partitions definition", ) selected_job = _get_repo_job_by_name( context, run_request.job_name if run_request.job_name else target_names[0] ) resolved_run_requests.append( run_request.with_resolved_tags_and_config( target_definition=selected_job, current_time=None, dynamic_partitions_store=context.caching_dynamic_partitions_loader, dynamic_partitions_requests=dynamic_partitions_requests, ) ) else: resolved_run_requests.append(run_request) return resolved_run_requests def validate_backfill_requests( self, run_requests: Sequence[RunRequest], context: SensorEvaluationContext, ) -> Sequence[RunRequest]: for run_request in run_requests: asset_selection = check.not_none( self._asset_selection, "Can only yield RunRequests with asset_graph_subset for sensors with an asset_selection", ) if run_request.asset_graph_subset: asset_keys = run_request.asset_graph_subset.asset_keys else: check.invariant( False, "RunRequest must have an asset_graph_subset to launch a backfill.", ) unexpected_asset_keys = (AssetSelection.keys(*asset_keys) - asset_selection).resolve( check.not_none(context.repository_def).asset_graph ) if unexpected_asset_keys: raise DagsterInvalidSubsetError( "RunRequest includes asset keys that are not part of sensor's asset_selection:" f" {unexpected_asset_keys}" ) return run_requests @property def _target(self) -> Optional[AutomationTarget]: return self._targets[0] if self._targets else None @public @property def job_name(self) -> Optional[str]: """Optional[str]: The name of the job that is targeted by this sensor.""" if len(self._targets) == 0: raise DagsterInvalidDefinitionError("No job was provided to SensorDefinition.") elif len(self._targets) > 1: raise DagsterInvalidDefinitionError( "job_name property not available when SensorDefinition has multiple jobs." ) return self._targets[0].job_name @public @property def default_status(self) -> DefaultSensorStatus: """DefaultSensorStatus: The default status for this sensor when it is first loaded in a code location. """ return self._default_status @property def asset_selection(self) -> Optional[AssetSelection]: return self._asset_selection @property def has_anonymous_job(self) -> bool: return bool(self._target and self._target.job_name.startswith(ANONYMOUS_ASSET_JOB_PREFIX))
@whitelist_for_serdes( storage_field_names={ "dagster_run_reactions": "pipeline_run_reactions", "log_key": "captured_log_key", }, ) class SensorExecutionData( NamedTuple( "_SensorExecutionData", [ ("run_requests", Optional[Sequence[RunRequest]]), ("skip_message", Optional[str]), ("cursor", Optional[str]), ("dagster_run_reactions", Optional[Sequence[DagsterRunReaction]]), ("log_key", Optional[Sequence[str]]), ( "dynamic_partitions_requests", Optional[ Sequence[Union[AddDynamicPartitionsRequest, DeleteDynamicPartitionsRequest]] ], ), ( "asset_events", Sequence[Union[AssetMaterialization, AssetObservation, AssetCheckEvaluation]], ), ("automation_condition_evaluations", Sequence[AutomationConditionEvaluation]), ], ) ): dagster_run_reactions: Optional[Sequence[DagsterRunReaction]] def __new__( cls, run_requests: Optional[Sequence[RunRequest]] = None, skip_message: Optional[str] = None, cursor: Optional[str] = None, dagster_run_reactions: Optional[Sequence[DagsterRunReaction]] = None, log_key: Optional[Sequence[str]] = None, dynamic_partitions_requests: Optional[ Sequence[Union[AddDynamicPartitionsRequest, DeleteDynamicPartitionsRequest]] ] = None, asset_events: Optional[ Sequence[Union[AssetMaterialization, AssetObservation, AssetCheckEvaluation]] ] = None, automation_condition_evaluations: Optional[Sequence[AutomationConditionEvaluation]] = None, ): check.opt_sequence_param(run_requests, "run_requests", RunRequest) check.opt_str_param(skip_message, "skip_message") check.opt_str_param(cursor, "cursor") check.opt_sequence_param(dagster_run_reactions, "dagster_run_reactions", DagsterRunReaction) check.opt_list_param(log_key, "log_key", str) check.opt_sequence_param( dynamic_partitions_requests, "dynamic_partitions_requests", (AddDynamicPartitionsRequest, DeleteDynamicPartitionsRequest), ) asset_events = check.opt_sequence_param( asset_events, "asset_events", (AssetMaterialization, AssetObservation, AssetCheckEvaluation), ) automation_condition_evaluations = check.opt_sequence_param( automation_condition_evaluations, "automation_condition_evaluations", AutomationConditionEvaluation, ) check.invariant( not (run_requests and skip_message), "Found both skip data and run request data" ) return super(SensorExecutionData, cls).__new__( cls, run_requests=run_requests, skip_message=skip_message, cursor=cursor, dagster_run_reactions=dagster_run_reactions, log_key=log_key, dynamic_partitions_requests=dynamic_partitions_requests, asset_events=asset_events, automation_condition_evaluations=automation_condition_evaluations, ) def wrap_sensor_evaluation( sensor_name: str, fn: RawSensorEvaluationFunction, ) -> SensorEvaluationFunction: resource_arg_names: Set[str] = {arg.name for arg in get_resource_args(fn)} def _wrapped_fn(context: SensorEvaluationContext): resource_args_populated = validate_and_get_resource_dict( context.resources, sensor_name, resource_arg_names ) context_param_name_if_present = get_context_param_name(fn) context_param = ( {context_param_name_if_present: context} if context_param_name_if_present else {} ) raw_evaluation_result = fn(**context_param, **resource_args_populated) def check_returned_scalar(scalar): if isinstance(scalar, (SkipReason, RunRequest, SensorResult)): return scalar elif scalar is not None: raise Exception( f"Error in sensor {sensor_name}: Sensor unexpectedly returned output " f"{scalar} of type {type(scalar)}. Should only return SkipReason or " "RunRequest objects." ) if inspect.isgenerator(raw_evaluation_result): result = [] try: while True: result.append(next(raw_evaluation_result)) except StopIteration as e: # captures the case where the evaluation function has a yield and also returns a # value if e.value is not None: result.append(check_returned_scalar(e.value)) return result elif isinstance(raw_evaluation_result, list): return raw_evaluation_result else: return [check_returned_scalar(raw_evaluation_result)] return _wrapped_fn
[docs] def build_sensor_context( instance: Optional[DagsterInstance] = None, cursor: Optional[str] = None, repository_name: Optional[str] = None, repository_def: Optional["RepositoryDefinition"] = None, sensor_name: Optional[str] = None, resources: Optional[Mapping[str, object]] = None, definitions: Optional["Definitions"] = None, instance_ref: Optional["InstanceRef"] = None, last_sensor_start_time: Optional[float] = None, ) -> SensorEvaluationContext: """Builds sensor execution context using the provided parameters. This function can be used to provide a context to the invocation of a sensor definition.If provided, the dagster instance must be persistent; DagsterInstance.ephemeral() will result in an error. Args: instance (Optional[DagsterInstance]): The dagster instance configured to run the sensor. cursor (Optional[str]): A cursor value to provide to the evaluation of the sensor. repository_name (Optional[str]): The name of the repository that the sensor belongs to. repository_def (Optional[RepositoryDefinition]): The repository that the sensor belongs to. If needed by the sensor top-level resource definitions will be pulled from this repository. You can provide either this or `definitions`. resources (Optional[Mapping[str, ResourceDefinition]]): A set of resource definitions to provide to the sensor. If passed, these will override any resource definitions provided by the repository. definitions (Optional[Definitions]): `Definitions` object that the sensor is defined in. If needed by the sensor, top-level resource definitions will be pulled from these definitions. You can provide either this or `repository_def`. last_sensor_start_time (Optional[float]): The last time the sensor was started. Examples: .. code-block:: python context = build_sensor_context() my_sensor(context) """ from dagster._core.definitions.definitions_class import Definitions from dagster._core.definitions.repository_definition import RepositoryDefinition from dagster._core.execution.build_resources import wrap_resources_for_execution check.opt_inst_param(instance, "instance", DagsterInstance) check.opt_str_param(cursor, "cursor") check.opt_str_param(repository_name, "repository_name") repository_def = normalize_to_repository( check.opt_inst_param(definitions, "definitions", Definitions), check.opt_inst_param(repository_def, "repository_def", RepositoryDefinition), error_on_none=False, ) return SensorEvaluationContext( instance_ref=instance_ref, last_tick_completion_time=None, last_run_key=None, cursor=cursor, log_key=None, repository_name=repository_name, instance=instance, repository_def=repository_def, sensor_name=sensor_name, resources=wrap_resources_for_execution(resources), last_sensor_start_time=last_sensor_start_time, )
T = TypeVar("T") def get_sensor_context_from_args_or_kwargs( fn: Callable[..., Any], args: Tuple[Any, ...], kwargs: Dict[str, Any], context_type: Type[T], ) -> Optional[T]: from dagster._config.pythonic_config import is_coercible_to_resource context_param_name = get_context_param_name(fn) kwarg_keys_non_resource = set(kwargs.keys()) - {param.name for param in get_resource_args(fn)} if len(args) + len(kwarg_keys_non_resource) > 1: raise DagsterInvalidInvocationError( "Sensor invocation received multiple non-resource arguments. Only a first " "positional context parameter should be provided when invoking." ) if any(is_coercible_to_resource(arg) for arg in args): raise DagsterInvalidInvocationError( "If directly invoking a sensor, you may not provide resources as" " positional" " arguments, only as keyword arguments." ) context: Optional[T] = None if len(args) > 0: context = check.opt_inst(args[0], context_type) elif len(kwargs) > 0: if context_param_name and context_param_name not in kwargs: raise DagsterInvalidInvocationError( f"Sensor invocation expected argument '{context_param_name}'." ) context = check.opt_inst(kwargs.get(context_param_name or "context"), context_type) elif context_param_name: # If the context parameter is present but no value was provided, we error raise DagsterInvalidInvocationError( "Sensor evaluation function expected context argument, but no context argument " "was provided when invoking." ) return context def get_or_create_sensor_context( fn: Callable[..., Any], *args: Any, context_type: Type = SensorEvaluationContext, **kwargs: Any, ) -> SensorEvaluationContext: """Based on the passed resource function and the arguments passed to it, returns the user-passed SensorEvaluationContext or creates one if it is not passed. Raises an exception if the user passes more than one argument or if the user-provided function requires a context parameter but none is passed. """ context = ( get_sensor_context_from_args_or_kwargs(fn, args, kwargs, context_type) or build_sensor_context() ) resource_args_from_kwargs = {} resource_args = {param.name for param in get_resource_args(fn)} for resource_arg in resource_args: if resource_arg in kwargs: resource_args_from_kwargs[resource_arg] = kwargs[resource_arg] if resource_args_from_kwargs: return context.merge_resources(resource_args_from_kwargs) return context def _run_requests_with_base_asset_jobs( run_requests: Iterable[RunRequest], context: SensorEvaluationContext, outer_asset_selection: AssetSelection, ) -> Sequence[RunRequest]: """For sensors that target asset selections instead of jobs, finds the corresponding base asset for a selected set of assets. """ asset_graph = context.repository_def.asset_graph # type: ignore # (possible none) result = [] for run_request in run_requests: if run_request.asset_selection is not None: asset_keys = run_request.asset_selection unexpected_asset_keys = ( KeysAssetSelection(selected_keys=asset_keys) - outer_asset_selection ).resolve(asset_graph) if unexpected_asset_keys: raise DagsterInvalidSubsetError( "RunRequest includes asset keys that are not part of sensor's asset_selection:" f" {unexpected_asset_keys}" ) else: asset_keys = outer_asset_selection.resolve(asset_graph) if run_request.asset_check_keys is not None: asset_check_keys = run_request.asset_check_keys unexpected_asset_check_keys = ( AssetCheckKeysSelection(selected_asset_check_keys=asset_check_keys) - outer_asset_selection ).resolve_checks(asset_graph) if unexpected_asset_check_keys: deprecation_warning( subject="Including asset check keys in a sensor RunRequest that are not a subset of the sensor asset_selection", breaking_version="1.9.0", additional_warn_text=f"Unexpected asset check keys: {unexpected_asset_check_keys}.", ) else: asset_check_keys = KeysAssetSelection(selected_keys=list(asset_keys)).resolve_checks( asset_graph ) base_job = context.repository_def.get_implicit_job_def_for_assets(asset_keys) # type: ignore # (possible none) result.append( run_request.with_replaced_attrs( job_name=base_job.name, # type: ignore # (possible none) asset_selection=list(asset_keys), asset_check_keys=list(asset_check_keys), ) ) return result