Ask AI

Source code for dagster._core.definitions.materialize

from typing import TYPE_CHECKING, Any, Mapping, Optional, Sequence, Set, Union

import dagster._check as check
from dagster._core.definitions.asset_spec import AssetSpec
from dagster._core.definitions.assets import AssetsDefinition
from dagster._core.definitions.resource_requirement import ResourceKeyRequirement
from dagster._core.definitions.source_asset import SourceAsset
from dagster._core.definitions.unresolved_asset_job_definition import define_asset_job
from dagster._core.errors import DagsterInvariantViolationError
from dagster._core.instance import DagsterInstance
from dagster._core.storage.io_manager import IOManagerDefinition
from dagster._core.storage.mem_io_manager import mem_io_manager
from dagster._utils.merger import merge_dicts

if TYPE_CHECKING:
    from dagster._core.definitions.asset_selection import CoercibleToAssetSelection
    from dagster._core.execution.execute_in_process_result import ExecuteInProcessResult

EPHEMERAL_JOB_NAME = "__ephemeral_asset_job__"


[docs] def materialize( assets: Sequence[Union[AssetsDefinition, AssetSpec, SourceAsset]], run_config: Any = None, instance: Optional[DagsterInstance] = None, resources: Optional[Mapping[str, object]] = None, partition_key: Optional[str] = None, raise_on_error: bool = True, tags: Optional[Mapping[str, str]] = None, selection: Optional["CoercibleToAssetSelection"] = None, ) -> "ExecuteInProcessResult": """Executes a single-threaded, in-process run which materializes provided assets. By default, will materialize assets to the local filesystem. Args: assets (Sequence[Union[AssetsDefinition, AssetSpec, SourceAsset]]): The assets to materialize. Unless you're using `deps` or `non_argument_deps`, you must also include all assets that are upstream of the assets that you want to materialize. This is because those upstream asset definitions have information that is needed to load their contents while materializing the downstream assets. You can use the `selection` argument to distinguish between assets that you want to materialize and assets that are just present for loading. resources (Optional[Mapping[str, object]]): The resources needed for execution. Can provide resource instances directly, or resource definitions. Note that if provided resources conflict with resources directly on assets, an error will be thrown. run_config (Optional[Any]): The run config to use for the run that materializes the assets. partition_key: (Optional[str]) The string partition key that specifies the run config to execute. Can only be used to select run config for assets with partitioned config. tags (Optional[Mapping[str, str]]): Tags for the run. selection (Optional[Union[str, Sequence[str], Sequence[AssetKey], Sequence[Union[AssetsDefinition, SourceAsset]], AssetSelection]]): A sub-selection of assets to materialize. If not provided, then all assets will be materialized. If providing a string or sequence of strings, https://docs.dagster.io/concepts/assets/asset-selection-syntax describes the accepted syntax. Returns: ExecuteInProcessResult: The result of the execution. Examples: .. code-block:: python @asset def asset1(): ... @asset def asset2(asset1): ... # executes a run that materializes asset1 and then asset2 materialize([asset1, asset2]) # executes a run that materializes just asset2, loading its input from asset1 materialize([asset1, asset2], selection=[asset2]) """ from dagster._core.definitions.definitions_class import Definitions assets = check.sequence_param( assets, "assets", of_type=(AssetsDefinition, AssetSpec, SourceAsset) ) instance = check.opt_inst_param(instance, "instance", DagsterInstance) partition_key = check.opt_str_param(partition_key, "partition_key") resources = check.opt_mapping_param(resources, "resources", key_type=str) defs = Definitions( jobs=[define_asset_job(name=EPHEMERAL_JOB_NAME, selection=selection)], assets=assets, resources=resources, ) # validate input asset graph and resources defs.get_all_job_defs() return check.not_none( defs.get_job_def(EPHEMERAL_JOB_NAME), "This should always return a job", ).execute_in_process( run_config=run_config, instance=instance, partition_key=partition_key, raise_on_error=raise_on_error, tags=tags, )
[docs] def materialize_to_memory( assets: Sequence[Union[AssetsDefinition, AssetSpec, SourceAsset]], run_config: Any = None, instance: Optional[DagsterInstance] = None, resources: Optional[Mapping[str, object]] = None, partition_key: Optional[str] = None, raise_on_error: bool = True, tags: Optional[Mapping[str, str]] = None, selection: Optional["CoercibleToAssetSelection"] = None, ) -> "ExecuteInProcessResult": """Executes a single-threaded, in-process run which materializes provided assets in memory. Will explicitly use :py:func:`mem_io_manager` for all required io manager keys. If any io managers are directly provided using the `resources` argument, a :py:class:`DagsterInvariantViolationError` will be thrown. Args: assets (Sequence[Union[AssetsDefinition, AssetSpec, SourceAsset]]): The assets to materialize. Can also provide :py:class:`SourceAsset` objects to fill dependencies for asset defs. run_config (Optional[Any]): The run config to use for the run that materializes the assets. resources (Optional[Mapping[str, object]]): The resources needed for execution. Can provide resource instances directly, or resource definitions. If provided resources conflict with resources directly on assets, an error will be thrown. partition_key: (Optional[str]) The string partition key that specifies the run config to execute. Can only be used to select run config for assets with partitioned config. tags (Optional[Mapping[str, str]]): Tags for the run. selection (Optional[Union[str, Sequence[str], Sequence[AssetKey], Sequence[Union[AssetsDefinition, SourceAsset]], AssetSelection]]): A sub-selection of assets to materialize. If not provided, then all assets will be materialized. If providing a string or sequence of strings, https://docs.dagster.io/concepts/assets/asset-selection-syntax describes the accepted syntax. Returns: ExecuteInProcessResult: The result of the execution. Examples: .. code-block:: python @asset def asset1(): ... @asset def asset2(asset1): ... # executes a run that materializes asset1 and then asset2 materialize([asset1, asset2]) # executes a run that materializes just asset1 materialize([asset1, asset2], selection=[asset1]) """ assets = check.sequence_param( assets, "assets", of_type=(AssetsDefinition, AssetSpec, SourceAsset) ) # Gather all resource defs for the purpose of checking io managers. resources_dict = resources or {} all_resource_keys = set(resources_dict.keys()) for asset in assets: if isinstance(asset, (AssetsDefinition, SourceAsset)): all_resource_keys = all_resource_keys.union(asset.resource_defs.keys()) io_manager_keys = _get_required_io_manager_keys(assets) for io_manager_key in io_manager_keys: if io_manager_key in all_resource_keys: raise DagsterInvariantViolationError( "Attempted to call `materialize_to_memory` with a resource " f"provided for io manager key '{io_manager_key}'. Do not " "provide resources for io manager keys when calling " "`materialize_to_memory`, as it will override io management " "behavior for all keys." ) resource_defs = merge_dicts({key: mem_io_manager for key in io_manager_keys}, resources_dict) return materialize( assets=assets, run_config=run_config, resources=resource_defs, instance=instance, partition_key=partition_key, raise_on_error=raise_on_error, tags=tags, selection=selection, )
def _get_required_io_manager_keys( assets: Sequence[Union[AssetsDefinition, AssetSpec, SourceAsset]], ) -> Set[str]: io_manager_keys = set() for asset in assets: if isinstance(asset, (AssetsDefinition, SourceAsset)): for requirement in asset.get_resource_requirements(): if requirement.expected_type == IOManagerDefinition and isinstance( requirement, ResourceKeyRequirement ): io_manager_keys.add(requirement.key) return io_manager_keys