Ask AI

Source code for dagster_dbt.asset_decorator

from typing import Any, Callable, Mapping, Optional, Set

from dagster import (
    AssetsDefinition,
    BackfillPolicy,
    DagsterInvalidDefinitionError,
    PartitionsDefinition,
    RetryPolicy,
    TimeWindowPartitionsDefinition,
    multi_asset,
)
from dagster._utils.warnings import suppress_dagster_warnings

from dagster_dbt.asset_utils import (
    DAGSTER_DBT_EXCLUDE_METADATA_KEY,
    DAGSTER_DBT_SELECT_METADATA_KEY,
    build_dbt_specs,
)
from dagster_dbt.dagster_dbt_translator import DagsterDbtTranslator, validate_translator
from dagster_dbt.dbt_manifest import DbtManifestParam, validate_manifest
from dagster_dbt.dbt_project import DbtProject


[docs] @suppress_dagster_warnings def dbt_assets( *, manifest: DbtManifestParam, select: str = "fqn:*", exclude: Optional[str] = None, name: Optional[str] = None, io_manager_key: Optional[str] = None, partitions_def: Optional[PartitionsDefinition] = None, dagster_dbt_translator: Optional[DagsterDbtTranslator] = None, backfill_policy: Optional[BackfillPolicy] = None, op_tags: Optional[Mapping[str, Any]] = None, required_resource_keys: Optional[Set[str]] = None, project: Optional[DbtProject] = None, retry_policy: Optional[RetryPolicy] = None, ) -> Callable[[Callable[..., Any]], AssetsDefinition]: """Create a definition for how to compute a set of dbt resources, described by a manifest.json. When invoking dbt commands using :py:class:`~dagster_dbt.DbtCliResource`'s :py:meth:`~dagster_dbt.DbtCliResource.cli` method, Dagster events are emitted by calling ``yield from`` on the event stream returned by :py:meth:`~dagster_dbt.DbtCliInvocation.stream`. Args: manifest (Union[Mapping[str, Any], str, Path]): The contents of a manifest.json file or the path to a manifest.json file. A manifest.json contains a representation of a dbt project (models, tests, macros, etc). We use this representation to create corresponding Dagster assets. select (str): A dbt selection string for the models in a project that you want to include. Defaults to ``fqn:*``. exclude (Optional[str]): A dbt selection string for the models in a project that you want to exclude. Defaults to "". name (Optional[str]): The name of the op. io_manager_key (Optional[str]): The IO manager key that will be set on each of the returned assets. When other ops are downstream of the loaded assets, the IOManager specified here determines how the inputs to those ops are loaded. Defaults to "io_manager". partitions_def (Optional[PartitionsDefinition]): Defines the set of partition keys that compose the dbt assets. dagster_dbt_translator (Optional[DagsterDbtTranslator]): Allows customizing how to map dbt models, seeds, etc. to asset keys and asset metadata. backfill_policy (Optional[BackfillPolicy]): If a partitions_def is defined, this determines how to execute backfills that target multiple partitions. If a time window partition definition is used, this parameter defaults to a single-run policy. op_tags (Optional[Dict[str, Any]]): A dictionary of tags for the op that computes the assets. Frameworks may expect and require certain metadata to be attached to a op. Values that are not strings will be json encoded and must meet the criteria that `json.loads(json.dumps(value)) == value`. required_resource_keys (Optional[Set[str]]): Set of required resource handles. project (Optional[DbtProject]): A DbtProject instance which provides a pointer to the dbt project location and manifest. Not required, but needed to attach code references from model code to Dagster assets. retry_policy (Optional[RetryPolicy]): The retry policy for the op that computes the asset. Examples: Running ``dbt build`` for a dbt project: .. code-block:: python from pathlib import Path from dagster import AssetExecutionContext from dagster_dbt import DbtCliResource, dbt_assets @dbt_assets(manifest=Path("target", "manifest.json")) def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource): yield from dbt.cli(["build"], context=context).stream() Running dbt commands with flags: .. code-block:: python from pathlib import Path from dagster import AssetExecutionContext from dagster_dbt import DbtCliResource, dbt_assets @dbt_assets(manifest=Path("target", "manifest.json")) def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource): yield from dbt.cli(["build", "--full-refresh"], context=context).stream() Running dbt commands with ``--vars``: .. code-block:: python import json from pathlib import Path from dagster import AssetExecutionContext from dagster_dbt import DbtCliResource, dbt_assets @dbt_assets(manifest=Path("target", "manifest.json")) def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource): dbt_vars = {"key": "value"} yield from dbt.cli(["build", "--vars", json.dumps(dbt_vars)], context=context).stream() Retrieving dbt artifacts after running a dbt command: .. code-block:: python from pathlib import Path from dagster import AssetExecutionContext from dagster_dbt import DbtCliResource, dbt_assets @dbt_assets(manifest=Path("target", "manifest.json")) def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource): dbt_build_invocation = dbt.cli(["build"], context=context) yield from dbt_build_invocation.stream() run_results_json = dbt_build_invocation.get_artifact("run_results.json") Running multiple dbt commands for a dbt project: .. code-block:: python from pathlib import Path from dagster import AssetExecutionContext from dagster_dbt import DbtCliResource, dbt_assets @dbt_assets(manifest=Path("target", "manifest.json")) def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource): yield from dbt.cli(["run"], context=context).stream() yield from dbt.cli(["test"], context=context).stream() Accessing the dbt event stream alongside the Dagster event stream: .. code-block:: python from pathlib import Path from dagster import AssetExecutionContext from dagster_dbt import DbtCliResource, dbt_assets @dbt_assets(manifest=Path("target", "manifest.json")) def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource): dbt_cli_invocation = dbt.cli(["build"], context=context) # Each dbt event is structured: https://docs.getdbt.com/reference/events-logging for dbt_event in dbt_invocation.stream_raw_events(): for dagster_event in dbt_event.to_default_asset_events( manifest=dbt_invocation.manifest, dagster_dbt_translator=dbt_invocation.dagster_dbt_translator, context=dbt_invocation.context, target_path=dbt_invocation.target_path, ): # Manipulate `dbt_event` ... # Then yield the Dagster event yield dagster_event Customizing the Dagster asset definition metadata inferred from a dbt project using :py:class:`~dagster_dbt.DagsterDbtTranslator`: .. code-block:: python from pathlib import Path from dagster import AssetExecutionContext from dagster_dbt import DagsterDbtTranslator, DbtCliResource, dbt_assets class CustomDagsterDbtTranslator(DagsterDbtTranslator): ... @dbt_assets( manifest=Path("target", "manifest.json"), dagster_dbt_translator=CustomDagsterDbtTranslator(), ) def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource): yield from dbt.cli(["build"], context=context).stream() Using a custom resource key for dbt: .. code-block:: python from pathlib import Path from dagster import AssetExecutionContext from dagster_dbt import DbtCliResource, dbt_assets @dbt_assets(manifest=Path("target", "manifest.json")) def my_dbt_assets(context: AssetExecutionContext, my_custom_dbt_resource_key: DbtCliResource): yield from my_custom_dbt_resource_key.cli(["build"], context=context).stream() Using a dynamically generated resource key for dbt using `required_resource_keys`: .. code-block:: python from pathlib import Path from dagster import AssetExecutionContext from dagster_dbt import DbtCliResource, dbt_assets dbt_resource_key = "my_custom_dbt_resource_key" @dbt_assets(manifest=Path("target", "manifest.json"), required_resource_keys={my_custom_dbt_resource_key}) def my_dbt_assets(context: AssetExecutionContext): dbt = getattr(context.resources, dbt_resource_key) yield from dbt.cli(["build"], context=context).stream() Invoking another Dagster :py:class:`~dagster.ResourceDefinition` alongside dbt: .. code-block:: python from pathlib import Path from dagster import AssetExecutionContext from dagster_dbt import DbtCliResource, dbt_assets from dagster_slack import SlackResource @dbt_assets(manifest=Path("target", "manifest.json")) def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource, slack: SlackResource): yield from dbt.cli(["build"], context=context).stream() slack_client = slack.get_client() slack_client.chat_postMessage(channel="#my-channel", text="dbt build succeeded!") Defining and accessing Dagster :py:class:`~dagster.Config` alongside dbt: .. code-block:: python from pathlib import Path from dagster import AssetExecutionContext, Config from dagster_dbt import DbtCliResource, dbt_assets class MyDbtConfig(Config): full_refresh: bool @dbt_assets(manifest=Path("target", "manifest.json")) def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource, config: MyDbtConfig): dbt_build_args = ["build"] if config.full_refresh: dbt_build_args += ["--full-refresh"] yield from dbt.cli(dbt_build_args, context=context).stream() Defining Dagster :py:class:`~dagster.PartitionDefinition` alongside dbt: .. code-block:: python import json from pathlib import Path from dagster import AssetExecutionContext, DailyPartitionDefinition from dagster_dbt import DbtCliResource, dbt_assets @dbt_assets( manifest=Path("target", "manifest.json"), partitions_def=DailyPartitionsDefinition(start_date="2023-01-01") ) def partitionshop_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource): time_window = context.partition_time_window dbt_vars = { "min_date": time_window.start.isoformat(), "max_date": time_window.end.isoformat() } dbt_build_args = ["build", "--vars", json.dumps(dbt_vars)] yield from dbt.cli(dbt_build_args, context=context).stream() """ dagster_dbt_translator = validate_translator(dagster_dbt_translator or DagsterDbtTranslator()) manifest = validate_manifest(manifest) specs, check_specs = build_dbt_specs( translator=dagster_dbt_translator, manifest=manifest, select=select, exclude=exclude or "", io_manager_key=io_manager_key, project=project, ) if op_tags and DAGSTER_DBT_SELECT_METADATA_KEY in op_tags: raise DagsterInvalidDefinitionError( f"To specify a dbt selection, use the 'select' argument, not '{DAGSTER_DBT_SELECT_METADATA_KEY}'" " with op_tags" ) if op_tags and DAGSTER_DBT_EXCLUDE_METADATA_KEY in op_tags: raise DagsterInvalidDefinitionError( f"To specify a dbt exclusion, use the 'exclude' argument, not '{DAGSTER_DBT_EXCLUDE_METADATA_KEY}'" " with op_tags" ) resolved_op_tags = { **({DAGSTER_DBT_SELECT_METADATA_KEY: select} if select else {}), **({DAGSTER_DBT_EXCLUDE_METADATA_KEY: exclude} if exclude else {}), **(op_tags if op_tags else {}), } if ( partitions_def and isinstance(partitions_def, TimeWindowPartitionsDefinition) and not backfill_policy ): backfill_policy = BackfillPolicy.single_run() return multi_asset( name=name, specs=specs, check_specs=check_specs, can_subset=True, required_resource_keys=required_resource_keys, partitions_def=partitions_def, op_tags=resolved_op_tags, backfill_policy=backfill_policy, retry_policy=retry_policy, )