Ask AI

Source code for dagster._core.storage.fs_io_manager

import os
import pickle
from typing import TYPE_CHECKING, Any, Optional

from pydantic import Field

import dagster._check as check
from dagster import (
    DagsterInvariantViolationError,
    Field as DagsterField,
)
from dagster._annotations import experimental
from dagster._config import StringSource
from dagster._config.pythonic_config import ConfigurableIOManagerFactory
from dagster._core.definitions.events import AssetKey, AssetMaterialization
from dagster._core.definitions.metadata import MetadataValue
from dagster._core.execution.context.init import InitResourceContext
from dagster._core.execution.context.input import InputContext
from dagster._core.execution.context.output import OutputContext
from dagster._core.storage.io_manager import IOManager, dagster_maintained_io_manager, io_manager
from dagster._core.storage.upath_io_manager import UPathIOManager
from dagster._utils import PICKLE_PROTOCOL, mkdir_p

if TYPE_CHECKING:
    from typing_extensions import Literal
    from upath import UPath


[docs] class FilesystemIOManager(ConfigurableIOManagerFactory["PickledObjectFilesystemIOManager"]): """Built-in filesystem IO manager that stores and retrieves values using pickling. The base directory that the pickle files live inside is determined by: * The IO manager's "base_dir" configuration value, if specified. Otherwise... * A "storage/" directory underneath the value for "local_artifact_storage" in your dagster.yaml file, if specified. Otherwise... * A "storage/" directory underneath the directory that the DAGSTER_HOME environment variable points to, if that environment variable is specified. Otherwise... * A temporary directory. Assigns each op output to a unique filepath containing run ID, step key, and output name. Assigns each asset to a single filesystem path, at "<base_dir>/<asset_key>". If the asset key has multiple components, the final component is used as the name of the file, and the preceding components as parent directories under the base_dir. Subsequent materializations of an asset will overwrite previous materializations of that asset. So, with a base directory of "/my/base/path", an asset with key `AssetKey(["one", "two", "three"])` would be stored in a file called "three" in a directory with path "/my/base/path/one/two/". Example usage: 1. Attach an IO manager to a set of assets using the reserved resource key ``"io_manager"``. .. code-block:: python from dagster import Definitions, asset, FilesystemIOManager @asset def asset1(): # create df ... return df @asset def asset2(asset1): return asset1[:5] defs = Definitions( assets=[asset1, asset2], resources={ "io_manager": FilesystemIOManager(base_dir="/my/base/path") }, ) 2. Specify a job-level IO manager using the reserved resource key ``"io_manager"``, which will set the given IO manager on all ops in a job. .. code-block:: python from dagster import FilesystemIOManager, job, op @op def op_a(): # create df ... return df @op def op_b(df): return df[:5] @job( resource_defs={ "io_manager": FilesystemIOManager(base_dir="/my/base/path") } ) def job(): op_b(op_a()) 3. Specify IO manager on :py:class:`Out`, which allows you to set different IO managers on different step outputs. .. code-block:: python from dagster import FilesystemIOManager, job, op, Out @op(out=Out(io_manager_key="my_io_manager")) def op_a(): # create df ... return df @op def op_b(df): return df[:5] @job(resource_defs={"my_io_manager": FilesystemIOManager()}) def job(): op_b(op_a()) """ base_dir: Optional[str] = Field(default=None, description="Base directory for storing files.") @classmethod def _is_dagster_maintained(cls) -> bool: return True def create_io_manager(self, context: InitResourceContext) -> "PickledObjectFilesystemIOManager": base_dir = self.base_dir or check.not_none(context.instance).storage_directory() return PickledObjectFilesystemIOManager(base_dir=base_dir)
[docs] @dagster_maintained_io_manager @io_manager( config_schema=FilesystemIOManager.to_config_schema(), description="Built-in filesystem IO manager that stores and retrieves values using pickling.", ) def fs_io_manager(init_context: InitResourceContext) -> "PickledObjectFilesystemIOManager": """Built-in filesystem IO manager that stores and retrieves values using pickling. The base directory that the pickle files live inside is determined by: * The IO manager's "base_dir" configuration value, if specified. Otherwise... * A "storage/" directory underneath the value for "local_artifact_storage" in your dagster.yaml file, if specified. Otherwise... * A "storage/" directory underneath the directory that the DAGSTER_HOME environment variable points to, if that environment variable is specified. Otherwise... * A temporary directory. Assigns each op output to a unique filepath containing run ID, step key, and output name. Assigns each asset to a single filesystem path, at "<base_dir>/<asset_key>". If the asset key has multiple components, the final component is used as the name of the file, and the preceding components as parent directories under the base_dir. Subsequent materializations of an asset will overwrite previous materializations of that asset. So, with a base directory of "/my/base/path", an asset with key `AssetKey(["one", "two", "three"])` would be stored in a file called "three" in a directory with path "/my/base/path/one/two/". Example usage: 1. Attach an IO manager to a set of assets using the reserved resource key ``"io_manager"``. .. code-block:: python from dagster import Definitions, asset, fs_io_manager @asset def asset1(): # create df ... return df @asset def asset2(asset1): return asset1[:5] defs = Definitions( assets=[asset1, asset2], resources={ "io_manager": fs_io_manager.configured({"base_dir": "/my/base/path"}) }, ) 2. Specify a job-level IO manager using the reserved resource key ``"io_manager"``, which will set the given IO manager on all ops in a job. .. code-block:: python from dagster import fs_io_manager, job, op @op def op_a(): # create df ... return df @op def op_b(df): return df[:5] @job( resource_defs={ "io_manager": fs_io_manager.configured({"base_dir": "/my/base/path"}) } ) def job(): op_b(op_a()) 3. Specify IO manager on :py:class:`Out`, which allows you to set different IO managers on different step outputs. .. code-block:: python from dagster import fs_io_manager, job, op, Out @op(out=Out(io_manager_key="my_io_manager")) def op_a(): # create df ... return df @op def op_b(df): return df[:5] @job(resource_defs={"my_io_manager": fs_io_manager}) def job(): op_b(op_a()) """ return FilesystemIOManager.from_resource_context(init_context)
class PickledObjectFilesystemIOManager(UPathIOManager): """Built-in filesystem IO manager that stores and retrieves values using pickling. Is compatible with local and remote filesystems via `universal-pathlib` and `fsspec`. Learn more about how to use remote filesystems here: https://github.com/fsspec/universal_pathlib. Args: base_dir (Optional[str]): base directory where all the step outputs which use this object manager will be stored in. **kwargs: additional keyword arguments for `universal_pathlib.UPath`. """ extension: str = "" # TODO: maybe change this to .pickle? Leaving blank for compatibility. def __init__(self, base_dir=None, **kwargs): from upath import UPath self.base_dir = check.opt_str_param(base_dir, "base_dir") super().__init__(base_path=UPath(base_dir, **kwargs)) def dump_to_path(self, context: OutputContext, obj: Any, path: "UPath"): try: with path.open("wb") as file: pickle.dump(obj, file, PICKLE_PROTOCOL) except (AttributeError, RecursionError, ImportError, pickle.PicklingError) as e: executor = context.step_context.job_def.executor_def if isinstance(e, RecursionError): # if obj can't be pickled because of RecursionError then __str__() will also # throw a RecursionError obj_repr = f"{obj.__class__} exceeds recursion limit and" else: obj_repr = obj.__str__() raise DagsterInvariantViolationError( f"Object {obj_repr} is not picklable. You are currently using the " f"fs_io_manager and the {executor.name}. You will need to use a different " "io manager to continue using this output. For example, you can use the " "mem_io_manager with the in_process_executor.\n" "For more information on io managers, visit " "https://docs.dagster.io/concepts/io-management/io-managers \n" "For more information on executors, vist " "https://docs.dagster.io/deployment/executors#overview" ) from e def load_from_path(self, context: InputContext, path: "UPath") -> Any: with path.open("rb") as file: return pickle.load(file) class CustomPathPickledObjectFilesystemIOManager(IOManager): """Built-in filesystem IO managerthat stores and retrieves values using pickling and allow users to specify file path for outputs. Args: base_dir (Optional[str]): base directory where all the step outputs which use this object manager will be stored in. """ def __init__(self, base_dir: Optional[str] = None): self.base_dir = check.opt_str_param(base_dir, "base_dir") self.write_mode: Literal["wb"] = "wb" self.read_mode: Literal["rb"] = "rb" def _get_path(self, path: str) -> str: return os.path.join(self.base_dir, path) # type: ignore # (possible none) def handle_output(self, context: OutputContext, obj: object): """Pickle the data and store the object to a custom file path. This method emits an AssetMaterialization event so the assets will be tracked by the Asset Catalog. """ check.inst_param(context, "context", OutputContext) metadata = context.definition_metadata path = check.str_param(metadata.get("path"), "metadata.path") filepath = self._get_path(path) # Ensure path exists mkdir_p(os.path.dirname(filepath)) context.log.debug(f"Writing file at: {filepath}") with open(filepath, self.write_mode) as write_obj: pickle.dump(obj, write_obj, PICKLE_PROTOCOL) return AssetMaterialization( asset_key=AssetKey([context.job_name, context.step_key, context.name]), metadata={"path": MetadataValue.path(os.path.abspath(filepath))}, ) def load_input(self, context: InputContext) -> object: """Unpickle the file from a given file path and Load it to a data object.""" check.inst_param(context, "context", InputContext) metadata = context.upstream_output.definition_metadata # type: ignore # (possible none) path = check.str_param(metadata.get("path"), "metadata.path") filepath = self._get_path(path) context.log.debug(f"Loading file from: {filepath}") with open(filepath, self.read_mode) as read_obj: return pickle.load(read_obj) @dagster_maintained_io_manager @io_manager(config_schema={"base_dir": DagsterField(StringSource, is_required=True)}) @experimental def custom_path_fs_io_manager( init_context: InitResourceContext, ) -> CustomPathPickledObjectFilesystemIOManager: """Built-in IO manager that allows users to custom output file path per output definition. It requires users to specify a base directory where all the step output will be stored in. It serializes and deserializes output values (assets) using pickling and stores the pickled object in the user-provided file paths. Example usage: .. code-block:: python from dagster import custom_path_fs_io_manager, job, op @op(out=Out(metadata={"path": "path/to/sample_output"})) def sample_data(df): return df[:5] my_custom_path_fs_io_manager = custom_path_fs_io_manager.configured( {"base_dir": "path/to/basedir"} ) @job(resource_defs={"io_manager": my_custom_path_fs_io_manager}) def my_job(): sample_data() """ return CustomPathPickledObjectFilesystemIOManager( base_dir=init_context.resource_config.get("base_dir") )