Ask AI

Source code for dagster._core.execution.context.system

"""This module contains the execution context objects that are internal to the system.
Not every property on these should be exposed to random Jane or Joe dagster user
so we have a different layer of objects that encode the explicit public API
in the user_context module.
"""

from abc import ABC, abstractmethod
from functools import cached_property
from typing import (
    TYPE_CHECKING,
    AbstractSet,
    Any,
    Dict,
    Iterable,
    List,
    Mapping,
    NamedTuple,
    Optional,
    Set,
    Union,
    cast,
)

import dagster._check as check
from dagster._annotations import public
from dagster._core.definitions.assets import AssetsDefinition
from dagster._core.definitions.dependency import OpNode
from dagster._core.definitions.events import AssetKey, AssetLineageInfo, CoercibleToAssetKey
from dagster._core.definitions.hook_definition import HookDefinition
from dagster._core.definitions.job_base import IJob
from dagster._core.definitions.job_definition import JobDefinition
from dagster._core.definitions.metadata import RawMetadataValue
from dagster._core.definitions.multi_dimensional_partitions import MultiPartitionsDefinition
from dagster._core.definitions.op_definition import OpDefinition
from dagster._core.definitions.partition import PartitionsDefinition, PartitionsSubset
from dagster._core.definitions.partition_key_range import PartitionKeyRange
from dagster._core.definitions.partition_mapping import infer_partition_mapping
from dagster._core.definitions.policy import RetryPolicy
from dagster._core.definitions.reconstruct import ReconstructableJob
from dagster._core.definitions.repository_definition.repository_definition import (
    RepositoryDefinition,
)
from dagster._core.definitions.resource_definition import ScopedResourcesBuilder
from dagster._core.definitions.step_launcher import StepLauncher
from dagster._core.definitions.time_window_partitions import (
    TimeWindow,
    TimeWindowPartitionsDefinition,
    has_one_dimension_time_window_partitioning,
)
from dagster._core.errors import DagsterInvariantViolationError
from dagster._core.execution.context.data_version_cache import (
    DataVersionCache,
    InputAssetVersionInfo,
)
from dagster._core.execution.context.input import InputContext
from dagster._core.execution.context.metadata_logging import OutputMetadataAccumulator
from dagster._core.execution.context.output import OutputContext, get_output_context
from dagster._core.execution.plan.handle import ResolvedFromDynamicStepHandle, StepHandle
from dagster._core.execution.plan.outputs import StepOutputHandle
from dagster._core.execution.plan.step import ExecutionStep
from dagster._core.execution.retries import RetryMode
from dagster._core.executor.base import Executor
from dagster._core.log_manager import DagsterLogManager
from dagster._core.storage.dagster_run import DagsterRun
from dagster._core.storage.io_manager import IOManager
from dagster._core.storage.tags import (
    ASSET_PARTITION_RANGE_END_TAG,
    ASSET_PARTITION_RANGE_START_TAG,
    MULTIDIMENSIONAL_PARTITION_PREFIX,
    PARTITION_NAME_TAG,
)
from dagster._core.system_config.objects import ResolvedRunConfig
from dagster._core.types.dagster_type import DagsterType

if TYPE_CHECKING:
    from dagster._core.definitions.data_version import DataVersion
    from dagster._core.definitions.dependency import NodeHandle
    from dagster._core.definitions.resource_definition import Resources
    from dagster._core.execution.context.hook import HookContext
    from dagster._core.execution.plan.plan import ExecutionPlan
    from dagster._core.execution.plan.state import KnownExecutionState
    from dagster._core.instance import DagsterInstance


def is_iterable(obj: Any) -> bool:
    try:
        iter(obj)
    except:
        return False
    return True


class IPlanContext(ABC):
    """Context interface to represent run information that does not require access to user code.

    The information available via this interface is accessible to the system throughout a run.
    """

    @property
    @abstractmethod
    def plan_data(self) -> "PlanData":
        raise NotImplementedError()

    @property
    def job(self) -> IJob:
        return self.plan_data.job

    @property
    def dagster_run(self) -> DagsterRun:
        return self.plan_data.dagster_run

    @property
    def run_id(self) -> str:
        return self.dagster_run.run_id

    @property
    def run_config(self) -> Mapping[str, object]:
        return self.dagster_run.run_config

    @property
    def job_name(self) -> str:
        return self.dagster_run.job_name

    @property
    def instance(self) -> "DagsterInstance":
        return self.plan_data.instance

    @property
    def raise_on_error(self) -> bool:
        return self.plan_data.raise_on_error

    @property
    def retry_mode(self) -> RetryMode:
        return self.plan_data.retry_mode

    @property
    def execution_plan(self) -> "ExecutionPlan":
        return self.plan_data.execution_plan

    @property
    @abstractmethod
    def output_capture(self) -> Optional[Mapping[StepOutputHandle, Any]]:
        raise NotImplementedError()

    @property
    def log(self) -> DagsterLogManager:
        raise NotImplementedError()

    @property
    def logging_tags(self) -> Mapping[str, str]:
        return {k: str(v) for k, v in self.log.metadata.items()}

    @property
    def event_tags(self) -> Mapping[str, str]:
        return {k: str(v) for k, v in self.log.metadata.items() if k != "job_tags"}

    def has_tag(self, key: str) -> bool:
        check.str_param(key, "key")
        return key in self.dagster_run.tags

    def get_tag(self, key: str) -> Optional[str]:
        check.str_param(key, "key")
        return self.dagster_run.tags.get(key)

    @property
    def run_tags(self) -> Mapping[str, str]:
        return self.dagster_run.tags


class PlanData(NamedTuple):
    """The data about a run that is available during both orchestration and execution.

    This object does not contain any information that requires access to user code, such as the
    pipeline definition and resources.
    """

    job: IJob
    dagster_run: DagsterRun
    instance: "DagsterInstance"
    execution_plan: "ExecutionPlan"
    raise_on_error: bool = False
    retry_mode: RetryMode = RetryMode.DISABLED


class ExecutionData(NamedTuple):
    """The data that is available to the system during execution.

    This object contains information that requires access to user code, such as the pipeline
    definition and resources.
    """

    scoped_resources_builder: ScopedResourcesBuilder
    resolved_run_config: ResolvedRunConfig
    job_def: JobDefinition
    repository_def: Optional[RepositoryDefinition]


class IStepContext(IPlanContext):
    """Interface to represent data to be available during either step orchestration or execution."""

    @property
    @abstractmethod
    def step(self) -> ExecutionStep:
        raise NotImplementedError()

    @property
    @abstractmethod
    def node_handle(self) -> "NodeHandle":
        raise NotImplementedError()

    @property
    def op_retry_policy(self) -> Optional[RetryPolicy]:
        # Currently this pulls the retry policy directly from the definition object -
        # the retry policy would need to be moved to JobSnapshot or ExecutionPlanSnapshot
        # in order for the run worker to be able to handle retries without direct
        # access to user code
        return self.job.get_definition().get_retry_policy_for_handle(self.node_handle)


class PlanOrchestrationContext(IPlanContext):
    """Context for the orchestration of a run.

    This context assumes inability to run user code directly.
    """

    def __init__(
        self,
        plan_data: PlanData,
        log_manager: DagsterLogManager,
        executor: Executor,
        output_capture: Optional[Dict[StepOutputHandle, Any]],
        resume_from_failure: bool = False,
    ):
        self._plan_data = plan_data
        self._log_manager = log_manager
        self._executor = executor
        self._output_capture = output_capture
        self._resume_from_failure = resume_from_failure

    @property
    def plan_data(self) -> PlanData:
        return self._plan_data

    @property
    def reconstructable_job(self) -> ReconstructableJob:
        if not isinstance(self.job, ReconstructableJob):
            raise DagsterInvariantViolationError(
                "reconstructable_pipeline property must be a ReconstructableJob"
            )
        return self.job

    @property
    def log(self) -> DagsterLogManager:
        return self._log_manager

    @property
    def executor(self) -> Executor:
        return self._executor

    @property
    def output_capture(self) -> Optional[Dict[StepOutputHandle, Any]]:
        return self._output_capture

    def for_step(self, step: ExecutionStep) -> "IStepContext":
        return StepOrchestrationContext(
            plan_data=self.plan_data,
            log_manager=self._log_manager.with_tags(**step.logging_tags),
            executor=self.executor,
            step=step,
            output_capture=self.output_capture,
        )

    @property
    def resume_from_failure(self) -> bool:
        return self._resume_from_failure


class StepOrchestrationContext(PlanOrchestrationContext, IStepContext):
    """Context for the orchestration of a step.

    This context assumes inability to run user code directly. Thus, it does not include any resource
    information.
    """

    def __init__(
        self,
        plan_data: PlanData,
        log_manager: DagsterLogManager,
        executor: Executor,
        step: ExecutionStep,
        output_capture: Optional[Dict[StepOutputHandle, Any]],
    ):
        super(StepOrchestrationContext, self).__init__(
            plan_data, log_manager, executor, output_capture
        )
        self._step = step

    @property
    def step(self) -> ExecutionStep:
        return self._step

    @property
    def node_handle(self) -> "NodeHandle":
        return self.step.node_handle


class PlanExecutionContext(IPlanContext):
    """Context for the execution of a plan.

    This context assumes that user code can be run directly, and thus includes resource and
    information.
    """

    def __init__(
        self,
        plan_data: PlanData,
        execution_data: ExecutionData,
        log_manager: DagsterLogManager,
        output_capture: Optional[Dict[StepOutputHandle, Any]] = None,
    ):
        self._plan_data = plan_data
        self._execution_data = execution_data
        self._log_manager = log_manager
        self._output_capture = output_capture

    @property
    def plan_data(self) -> PlanData:
        return self._plan_data

    @property
    def output_capture(self) -> Optional[Dict[StepOutputHandle, Any]]:
        return self._output_capture

    def for_step(
        self,
        step: ExecutionStep,
        known_state: Optional["KnownExecutionState"] = None,
    ) -> "StepExecutionContext":
        # TODO: refactoring to build up reasonable layer of prefetching -- 2024-04-27 schrockn
        # if is_step_in_asset_graph_layer(step, self.job_def):
        # ... prefetch input asset version info

        return StepExecutionContext(
            plan_data=self.plan_data,
            execution_data=self._execution_data,
            log_manager=self._log_manager.with_tags(**step.logging_tags),
            step=step,
            output_capture=self.output_capture,
            known_state=known_state,
        )

    @property
    def job_def(self) -> JobDefinition:
        return self._execution_data.job_def

    @property
    def repository_def(self) -> RepositoryDefinition:
        check.invariant(
            self._execution_data.repository_def is not None,
            "No repository definition was set on the step context",
        )
        return cast(RepositoryDefinition, self._execution_data.repository_def)

    @property
    def resolved_run_config(self) -> ResolvedRunConfig:
        return self._execution_data.resolved_run_config

    @property
    def scoped_resources_builder(self) -> ScopedResourcesBuilder:
        return self._execution_data.scoped_resources_builder

    @property
    def log(self) -> DagsterLogManager:
        return self._log_manager

    @property
    def has_partitions(self) -> bool:
        tags = self._plan_data.dagster_run.tags
        return bool(
            PARTITION_NAME_TAG in tags
            or any([tag.startswith(MULTIDIMENSIONAL_PARTITION_PREFIX) for tag in tags.keys()])
            or (
                tags.get(ASSET_PARTITION_RANGE_START_TAG)
                and tags.get(ASSET_PARTITION_RANGE_END_TAG)
            )
        )

    @property
    def has_partition_key(self) -> bool:
        return PARTITION_NAME_TAG in self._plan_data.dagster_run.tags

    @property
    def has_partition_key_range(self) -> bool:
        return ASSET_PARTITION_RANGE_START_TAG in self._plan_data.dagster_run.tags

    def for_type(self, dagster_type: DagsterType) -> "TypeCheckContext":
        return TypeCheckContext(
            self.run_id, self.log, self._execution_data.scoped_resources_builder, dagster_type
        )


def is_step_in_asset_graph_layer(step: ExecutionStep, job_def: JobDefinition) -> bool:
    """Whether this step is aware of the asset graph definition layer inferred by presence of asset info on outputs."""
    for output in step.step_outputs:
        asset_key = job_def.asset_layer.asset_key_for_output(step.node_handle, output.name)
        if asset_key is not None:
            return True
    return False


[docs] class StepExecutionContext(PlanExecutionContext, IStepContext): """Context for the execution of a step. Users should not instantiate this class directly. This context assumes that user code can be run directly, and thus includes resource and information. """ def __init__( self, plan_data: PlanData, execution_data: ExecutionData, log_manager: DagsterLogManager, step: ExecutionStep, output_capture: Optional[Dict[StepOutputHandle, Any]], known_state: Optional["KnownExecutionState"], ): from dagster._core.execution.resources_init import get_required_resource_keys_for_step super(StepExecutionContext, self).__init__( plan_data=plan_data, execution_data=execution_data, log_manager=log_manager, output_capture=output_capture, ) self._step = step self._required_resource_keys = get_required_resource_keys_for_step( plan_data.job.get_definition(), step, plan_data.execution_plan, ) self._resources = execution_data.scoped_resources_builder.build( self._required_resource_keys ) self._known_state = known_state self._input_lineage: List[AssetLineageInfo] = [] resources_iter = cast(Iterable, self._resources) step_launcher_resources = [ resource for resource in resources_iter if isinstance(resource, StepLauncher) ] self._step_launcher: Optional[StepLauncher] = None if len(step_launcher_resources) > 1: raise DagsterInvariantViolationError( f"Multiple required resources for {self.describe_op()} have inherited StepLauncher" f"There should be at most one step launcher resource per {self.op_def.node_type_str}." ) elif len(step_launcher_resources) == 1: self._step_launcher = step_launcher_resources[0] self._step_exception: Optional[BaseException] = None self._step_output_capture: Optional[Dict[StepOutputHandle, Any]] = None self._step_output_metadata_capture: Optional[Dict[StepOutputHandle, Any]] = None # Enable step output capture if there are any hooks which will receive them. # Expect in the future that hooks may control whether or not they get outputs, # but for now presence of any will cause output capture. if self.job_def.get_all_hooks_for_handle(self.node_handle): self._step_output_capture = {} self._step_output_metadata_capture = {} self._metadata_accumulator = OutputMetadataAccumulator.empty() self._seen_outputs: Dict[str, Union[str, Set[str]]] = {} self._data_version_cache = DataVersionCache(self) self._requires_typed_event_stream = False self._typed_event_stream_error_message = None # In this mode no conversion is done on returned values and missing but expected outputs are not # allowed. @property def requires_typed_event_stream(self) -> bool: return self._requires_typed_event_stream @property def typed_event_stream_error_message(self) -> Optional[str]: return self._typed_event_stream_error_message # Error message will be appended to the default error message. def set_requires_typed_event_stream(self, *, error_message: Optional[str] = None): self._requires_typed_event_stream = True self._typed_event_stream_error_message = error_message @property def step(self) -> ExecutionStep: return self._step @property def node_handle(self) -> "NodeHandle": return self.step.node_handle @property def required_resource_keys(self) -> AbstractSet[str]: return self._required_resource_keys @property def resources(self) -> "Resources": return self._resources @property def step_launcher(self) -> Optional[StepLauncher]: return self._step_launcher @property def op_def(self) -> OpDefinition: return self.op.definition @property def job_def(self) -> "JobDefinition": return self._execution_data.job_def @property def repository_def(self) -> RepositoryDefinition: check.invariant( self._execution_data.repository_def is not None, "No repository definition was set on the step context", ) return cast(RepositoryDefinition, self._execution_data.repository_def) @property def op(self) -> OpNode: return self.job_def.get_op(self._step.node_handle) @property def op_retry_policy(self) -> Optional[RetryPolicy]: return self.job_def.get_retry_policy_for_handle(self.node_handle) def describe_op(self) -> str: return f'op "{self.node_handle}"' def get_io_manager(self, step_output_handle: StepOutputHandle) -> IOManager: step_output = self.execution_plan.get_step_output(step_output_handle) io_manager_key = ( self.job_def.get_node(step_output.node_handle) .output_def_named(step_output.name) .io_manager_key ) output_manager = getattr(self.resources, io_manager_key) return check.inst(output_manager, IOManager) def get_output_context( self, step_output_handle: StepOutputHandle, output_metadata: Optional[Mapping[str, RawMetadataValue]] = None, ) -> OutputContext: return get_output_context( self.execution_plan, self.job_def, self.resolved_run_config, step_output_handle, self._get_source_run_id(step_output_handle), log_manager=self.log, step_context=self, resources=None, version=self.execution_plan.get_version_for_step_output_handle(step_output_handle), output_metadata=output_metadata, ) def for_input_manager( self, name: str, config: Any, definition_metadata: Any, dagster_type: DagsterType, source_handle: Optional[StepOutputHandle] = None, resource_config: Any = None, resources: Optional["Resources"] = None, artificial_output_context: Optional["OutputContext"] = None, ) -> InputContext: if source_handle and artificial_output_context: check.failed("Cannot specify both source_handle and artificial_output_context.") upstream_output: Optional[OutputContext] = None if source_handle is not None: version = self.execution_plan.get_version_for_step_output_handle(source_handle) # NOTE: this is using downstream step_context for upstream OutputContext. step_context # will be set to None for 0.15 release. upstream_output = get_output_context( self.execution_plan, self.job_def, self.resolved_run_config, source_handle, self._get_source_run_id(source_handle), log_manager=self.log, step_context=self, resources=None, version=version, warn_on_step_context_use=True, ) else: upstream_output = artificial_output_context asset_key = self.job_def.asset_layer.asset_key_for_input( node_handle=self.node_handle, input_name=name ) asset_partitions_subset = ( self.asset_partitions_subset_for_input(name) if self.has_asset_partitions_for_input(name) else None ) asset_partitions_def = ( self.job_def.asset_layer.get(asset_key).partitions_def if asset_key else None ) return InputContext( job_name=self.job_def.name, name=name, op_def=self.op_def, config=config, definition_metadata=definition_metadata, upstream_output=upstream_output, dagster_type=dagster_type, log_manager=self.log, step_context=self, resource_config=resource_config, resources=resources, asset_key=asset_key, asset_partitions_subset=asset_partitions_subset, asset_partitions_def=asset_partitions_def, instance=self.instance, ) def for_hook(self, hook_def: HookDefinition) -> "HookContext": from dagster._core.execution.context.hook import HookContext return HookContext(self, hook_def) def get_known_state(self) -> "KnownExecutionState": if not self._known_state: check.failed( "Attempted to access KnownExecutionState but it was not provided at context" " creation" ) return self._known_state def can_load( self, step_output_handle: StepOutputHandle, ) -> bool: # can load from upstream in the same run if step_output_handle in self.get_known_state().ready_outputs: return True if ( self._should_load_from_previous_runs(step_output_handle) # should and can load from a previous run and self._get_source_run_id_from_logs(step_output_handle) ): return True return False def observe_output(self, output_name: str, mapping_key: Optional[str] = None) -> None: if mapping_key: if output_name not in self._seen_outputs: self._seen_outputs[output_name] = set() cast(Set[str], self._seen_outputs[output_name]).add(mapping_key) else: self._seen_outputs[output_name] = "seen" def has_seen_output(self, output_name: str, mapping_key: Optional[str] = None) -> bool: if mapping_key: return ( output_name in self._seen_outputs and mapping_key in self._seen_outputs[output_name] ) return output_name in self._seen_outputs def add_output_metadata( self, metadata: Mapping[str, Any], output_name: Optional[str] = None, mapping_key: Optional[str] = None, ) -> None: if output_name is None and len(self.op_def.output_defs) == 1: output_def = self.op_def.output_defs[0] output_name = output_def.name elif output_name is None: raise DagsterInvariantViolationError( "Attempted to add metadata without providing output_name, but multiple outputs" " exist. Please provide an output_name to the invocation of" " `context.add_output_metadata`." ) else: output_def = self.op_def.output_def_named(output_name) if self.has_seen_output(output_name, mapping_key): output_desc = ( f"output '{output_def.name}'" if not mapping_key else f"output '{output_def.name}' with mapping_key '{mapping_key}'" ) raise DagsterInvariantViolationError( f"In {self.op_def.node_type_str} '{self.op.name}', attempted to log output" f" metadata for {output_desc} which has already been yielded. Metadata must be" " logged before the output is yielded." ) if output_def.is_dynamic: if not mapping_key: raise DagsterInvariantViolationError( f"In {self.op_def.node_type_str} '{self.op.name}', Attempted to add metadata" f" for dynamic output '{output_def.name}' without providing a mapping key. When" " logging metadata for a dynamic output, it is necessary to provide a mapping key." ) self._metadata_accumulator = self._metadata_accumulator.with_additional_output_metadata( output_name=output_name, metadata=metadata, mapping_key=mapping_key, ) def add_asset_metadata( self, metadata: Mapping[str, Any], asset_key: Optional[CoercibleToAssetKey] = None, partition_key: Optional[str] = None, ) -> None: if not self.assets_def: raise DagsterInvariantViolationError( "Attempted to add metadata for a non-asset computation. Only assets should be calling this function." ) if len(self.assets_def.keys) == 0: raise DagsterInvariantViolationError( "Attempted to add metadata without providing asset_key, but no asset_keys" " are being materialized. `context.add_asset_metadata` should only be called" " when materializing assets." ) if asset_key is None and len(self.assets_def.keys) > 1: raise DagsterInvariantViolationError( "Attempted to add metadata without providing asset_key, but multiple asset_keys" " can potentially be materialized. Please provide an asset_key to the invocation of" " `context.add_asset_metadata`." ) asset_key = AssetKey.from_coercible(asset_key) if asset_key else self.assets_def.key if asset_key not in self.assets_def.keys: raise DagsterInvariantViolationError( f"Attempted to add metadata for asset key '{asset_key}' that is not being materialized." ) if partition_key: if not self.assets_def.partitions_def: raise DagsterInvariantViolationError( f"Attempted to add metadata for partition key '{partition_key}' without a partitions definition." ) targeted_partitions = self.assets_def.partitions_def.get_partition_keys_in_range( partition_key_range=self.partition_key_range ) if partition_key not in targeted_partitions: raise DagsterInvariantViolationError( f"Attempted to add metadata for partition key '{partition_key}' that is not being targeted." ) self._metadata_accumulator = self._metadata_accumulator.with_additional_asset_metadata( asset_key=asset_key, metadata=metadata, partition_key=partition_key, ) def get_output_metadata( self, output_name: str, mapping_key: Optional[str] = None, ) -> Optional[Mapping[str, Any]]: return self._metadata_accumulator.get_output_metadata(output_name, mapping_key) def get_asset_metadata( self, asset_key: AssetKey, partition_key: Optional[str] = None, ) -> Optional[Mapping[str, Any]]: return self._metadata_accumulator.get_asset_metadata(asset_key, partition_key) def _get_source_run_id_from_logs(self, step_output_handle: StepOutputHandle) -> Optional[str]: # walk through event logs to find the right run_id based on the run lineage parent_state = self.get_known_state().parent_state while parent_state: # if the parent run has yielded an StepOutput event for the given step output, # we find the source run id if step_output_handle in parent_state.produced_outputs: return parent_state.run_id # else, keep looking backwards parent_state = parent_state.get_parent_state() # When a fixed path is provided via io manager, it's able to run step subset using an execution # plan when the ascendant outputs were not previously created by dagster-controlled # computations. for example, in backfills, with fixed path io manager, we allow users to # "re-execute" runs with steps where the outputs weren't previously stored by dagster. # Warn about this special case because it will also reach here when all previous runs have # skipped yielding this output. From the logs, we have no easy way to differentiate the fixed # path case and the skipping case, until we record the skipping info in KnownExecutionState, # i.e. resolve https://github.com/dagster-io/dagster/issues/3511 self.log.warning( f"No previously stored outputs found for source {step_output_handle}. " "This is either because you are using an IO Manager that does not depend on run ID, " "or because all the previous runs have skipped the output in conditional execution." ) return None def _should_load_from_previous_runs(self, step_output_handle: StepOutputHandle) -> bool: # should not load if not a re-execution if self.dagster_run.parent_run_id is None: return False # should not load if re-executing the entire pipeline if self.dagster_run.step_keys_to_execute is None: return False # should not load if the entire dynamic step is being executed in the current run handle = StepHandle.parse_from_key(step_output_handle.step_key) if ( isinstance(handle, ResolvedFromDynamicStepHandle) and handle.unresolved_form.to_key() in self.dagster_run.step_keys_to_execute ): return False # should not load if this step is being executed in the current run return step_output_handle.step_key not in self.dagster_run.step_keys_to_execute def _get_source_run_id(self, step_output_handle: StepOutputHandle) -> Optional[str]: if self._should_load_from_previous_runs(step_output_handle): return self._get_source_run_id_from_logs(step_output_handle) else: return self.dagster_run.run_id def capture_step_exception(self, exception: BaseException): self._step_exception = check.inst_param(exception, "exception", BaseException) @property def step_exception(self) -> Optional[BaseException]: return self._step_exception @property def step_output_capture(self) -> Optional[Dict[StepOutputHandle, Any]]: return self._step_output_capture @property def step_output_metadata_capture(self) -> Optional[Dict[StepOutputHandle, Any]]: return self._step_output_metadata_capture @property def previous_attempt_count(self) -> int: return self.get_known_state().get_retry_state().get_attempt_count(self._step.key) @property def op_config(self) -> Any: op_config = self.resolved_run_config.ops.get(str(self.node_handle)) return op_config.config if op_config else None @property def is_op_in_graph(self) -> bool: """Whether this step corresponds to an op within a graph (either @graph, or @graph_asset).""" return self.step.node_handle.parent is not None @property def is_sda_step(self) -> bool: """Whether this step corresponds to a software define asset, inferred by presence of asset info on outputs. note: ops can materialize assets as well. """ return is_step_in_asset_graph_layer(self.step, self.job_def) @property def is_in_graph_asset(self) -> bool: """If the step is an op in a graph-backed asset returns True. Checks by first confirming the step is in a graph, then checking that the node corresponds to an AssetsDefinitions in the asset layer. """ return ( self.is_op_in_graph and self.job_def.asset_layer.assets_defs_by_node_handle.get(self.node_handle) is not None ) @property def is_asset_check_step(self) -> bool: """Whether this step corresponds to at least one asset check.""" return any( self.job_def.asset_layer.asset_check_key_for_output(self.node_handle, output.name) for output in self.step.step_outputs ) def set_data_version(self, asset_key: AssetKey, data_version: "DataVersion") -> None: return self._data_version_cache.set_data_version(asset_key, data_version) def has_data_version(self, asset_key: AssetKey) -> bool: return self._data_version_cache.has_data_version(asset_key) def get_data_version(self, asset_key: AssetKey) -> "DataVersion": return self._data_version_cache.get_data_version(asset_key) @property def input_asset_records(self) -> Optional[Mapping[AssetKey, Optional["InputAssetVersionInfo"]]]: return self._data_version_cache.input_asset_version_info @property def is_external_input_asset_version_info_loaded(self) -> bool: return self._data_version_cache.is_external_input_asset_version_info_loaded def maybe_fetch_and_get_input_asset_version_info( self, key: AssetKey ) -> Optional["InputAssetVersionInfo"]: return self._data_version_cache.maybe_fetch_and_get_input_asset_version_info(key) # "external" refers to records for inputs generated outside of this step def fetch_external_input_asset_version_info(self) -> None: return self._data_version_cache.fetch_external_input_asset_version_info() # Call this to clear the cache for an input asset record. This is necessary when an old # materialization for an asset was loaded during `fetch_external_input_asset_records` because an # intrastep asset is not required, but then that asset is materialized during the step. If we # don't clear the cache for this asset, then we won't use the most up-to-date asset record. def wipe_input_asset_version_info(self, key: AssetKey) -> None: return self._data_version_cache.wipe_input_asset_version_info(key) def get_output_asset_keys(self) -> AbstractSet[AssetKey]: output_keys: Set[AssetKey] = set() asset_layer = self.job_def.asset_layer for step_output in self.step.step_outputs: asset_key = asset_layer.asset_key_for_output(self.node_handle, step_output.name) if asset_key is None or asset_key not in asset_layer.asset_keys_for_node( self.node_handle ): continue output_keys.add(asset_key) return output_keys @cached_property def run_partitions_def(self) -> Optional[PartitionsDefinition]: job_def_partitions_def = self.job_def.partitions_def if job_def_partitions_def is not None: return job_def_partitions_def # In the case where a job targets assets with different PartitionsDefinitions, # job_def.partitions_def will be None, but the assets targeted in this step might still be # partitioned. All assets within a step are expected to either have the same partitions_def # or no partitions_def. Get the partitions_def from one of the assets that has one. return self.asset_partitions_def @cached_property def assets_def(self) -> Optional[AssetsDefinition]: return self.job_def.asset_layer.assets_def_for_node(self.node_handle) @cached_property def asset_partitions_def(self) -> Optional[PartitionsDefinition]: """If the current step is executing a partitioned asset, returns the PartitionsDefinition for that asset. If there are one or more partitioned assets executing in the step, they're expected to all have the same PartitionsDefinition. """ if self.assets_def is not None: for asset_key in self.assets_def.keys: partitions_def = self.job_def.asset_layer.get(asset_key).partitions_def if partitions_def is not None: return partitions_def return None @property def partition_key(self) -> str: from dagster._core.definitions.multi_dimensional_partitions import ( MultiPartitionsDefinition, get_multipartition_key_from_tags, ) if not self.has_partitions: raise DagsterInvariantViolationError( "Cannot access partition_key for a non-partitioned run" ) tags = self._plan_data.dagster_run.tags if any([tag.startswith(MULTIDIMENSIONAL_PARTITION_PREFIX) for tag in tags.keys()]): return get_multipartition_key_from_tags(tags) elif PARTITION_NAME_TAG in tags: return tags[PARTITION_NAME_TAG] else: range_start = tags[ASSET_PARTITION_RANGE_START_TAG] range_end = tags[ASSET_PARTITION_RANGE_END_TAG] if range_start != range_end: raise DagsterInvariantViolationError( "Cannot access partition_key for a partitioned run with a range of partitions." " Call partition_key_range instead." ) else: if isinstance(self.run_partitions_def, MultiPartitionsDefinition): return self.run_partitions_def.get_partition_key_from_str( cast(str, range_start) ) return cast(str, range_start) @property def partition_key_range(self) -> PartitionKeyRange: from dagster._core.definitions.multi_dimensional_partitions import ( MultiPartitionsDefinition, get_multipartition_key_from_tags, ) if not self.has_partitions: raise DagsterInvariantViolationError( "Cannot access partition_key for a non-partitioned run" ) tags = self._plan_data.dagster_run.tags if any([tag.startswith(MULTIDIMENSIONAL_PARTITION_PREFIX) for tag in tags.keys()]): multipartition_key = get_multipartition_key_from_tags(tags) return PartitionKeyRange(multipartition_key, multipartition_key) elif PARTITION_NAME_TAG in tags: partition_key = tags[PARTITION_NAME_TAG] return PartitionKeyRange(partition_key, partition_key) else: partition_key_range_start = tags[ASSET_PARTITION_RANGE_START_TAG] if partition_key_range_start is not None: if isinstance(self.run_partitions_def, MultiPartitionsDefinition): return PartitionKeyRange( self.run_partitions_def.get_partition_key_from_str( partition_key_range_start ), self.run_partitions_def.get_partition_key_from_str( tags[ASSET_PARTITION_RANGE_END_TAG] ), ) return PartitionKeyRange(partition_key_range_start, tags[ASSET_PARTITION_RANGE_END_TAG]) def has_asset_partitions_for_input(self, input_name: str) -> bool: asset_layer = self.job_def.asset_layer upstream_asset_key = asset_layer.asset_key_for_input(self.node_handle, input_name) return ( upstream_asset_key is not None and asset_layer.has(upstream_asset_key) and asset_layer.get(upstream_asset_key).partitions_def is not None ) def asset_partition_key_range_for_input(self, input_name: str) -> PartitionKeyRange: subset = self.asset_partitions_subset_for_input(input_name) asset_layer = self.job_def.asset_layer upstream_asset_key = check.not_none( asset_layer.asset_key_for_input(self.node_handle, input_name) ) upstream_asset_partitions_def = check.not_none( asset_layer.get(upstream_asset_key).partitions_def ) partition_key_ranges = subset.get_partition_key_ranges( partitions_def=cast(PartitionsDefinition, upstream_asset_partitions_def), dynamic_partitions_store=self.instance, ) if len(partition_key_ranges) != 1: check.failed( "Tried to access asset partition key range, but there are " f"({len(partition_key_ranges)}) key ranges associated with this input.", ) return partition_key_ranges[0] def asset_partitions_subset_for_input( self, input_name: str, *, require_valid_partitions: bool = True ) -> PartitionsSubset: asset_layer = self.job_def.asset_layer assets_def = asset_layer.assets_def_for_node(self.node_handle) upstream_asset_key = asset_layer.asset_key_for_input(self.node_handle, input_name) if upstream_asset_key is not None: upstream_asset_partitions_def = asset_layer.get(upstream_asset_key).partitions_def if upstream_asset_partitions_def is not None: partitions_def = self.asset_partitions_def if assets_def else None partitions_subset = ( partitions_def.empty_subset().with_partition_key_range( partitions_def, self.partition_key_range, dynamic_partitions_store=self.instance, ) if partitions_def else None ) partition_mapping = infer_partition_mapping( asset_layer.partition_mapping_for_node_input( self.node_handle, upstream_asset_key ), partitions_def, upstream_asset_partitions_def, ) mapped_partitions_result = ( partition_mapping.get_upstream_mapped_partitions_result_for_partitions( partitions_subset, partitions_def, upstream_asset_partitions_def, dynamic_partitions_store=self.instance, ) ) if ( require_valid_partitions and not mapped_partitions_result.required_but_nonexistent_subset.is_empty ): raise DagsterInvariantViolationError( f"Partition key range {self.partition_key_range} in" f" {self.node_handle.name} depends on invalid partitions" f" {mapped_partitions_result.required_but_nonexistent_subset} in" f" upstream asset {upstream_asset_key}" ) return mapped_partitions_result.partitions_subset check.failed("The input has no asset partitions") def asset_partition_key_for_input(self, input_name: str) -> str: start, end = self.asset_partition_key_range_for_input(input_name) if start == end: return start else: check.failed( f"Tried to access partition key for input '{input_name}' of step '{self.step.key}'," f" but the step input has a partition range: '{start}' to '{end}'." ) def _partitions_def_for_output(self, output_name: str) -> Optional[PartitionsDefinition]: asset_key = self.job_def.asset_layer.asset_key_for_output( node_handle=self.node_handle, output_name=output_name ) if asset_key: return self.job_def.asset_layer.asset_graph.get(asset_key).partitions_def else: return None def partitions_def_for_output(self, output_name: str) -> Optional[PartitionsDefinition]: return self._partitions_def_for_output(output_name) def has_asset_partitions_for_output(self, output_name: str) -> bool: return self._partitions_def_for_output(output_name) is not None def asset_partition_key_range_for_output(self, output_name: str) -> PartitionKeyRange: if self._partitions_def_for_output(output_name) is not None: return self.partition_key_range check.failed("The output has no asset partitions") def asset_partition_key_for_output(self, output_name: str) -> str: start, end = self.asset_partition_key_range_for_output(output_name) if start == end: return start else: check.failed( f"Tried to access partition key for output '{output_name}' of step" f" '{self.step.key}', but the step output has a partition range: '{start}' to" f" '{end}'." ) def asset_partitions_time_window_for_output(self, output_name: str) -> TimeWindow: """The time window for the partitions of the asset correponding to the given output. Raises an error if either of the following are true: - The output asset has no partitioning. - The output asset is not partitioned with a TimeWindowPartitionsDefinition or a MultiPartitionsDefinition with one time-partitioned dimension. """ partitions_def = self._partitions_def_for_output(output_name) if not partitions_def: raise ValueError( f"Tried to get asset partitions for an output '{output_name}' that does not correspond to a " "partitioned asset." ) if not has_one_dimension_time_window_partitioning(partitions_def): raise ValueError( f"Tried to get asset partitions for an output '{output_name}' that correponds to a partitioned " "asset that is not time-partitioned." ) partitions_def = cast( Union[TimeWindowPartitionsDefinition, MultiPartitionsDefinition], partitions_def ) partition_key_range = self.asset_partition_key_range_for_output(output_name) return TimeWindow( # mypy thinks partitions_def is <nothing> here because ???? partitions_def.time_window_for_partition_key(partition_key_range.start).start, partitions_def.time_window_for_partition_key(partition_key_range.end).end, ) @property def partition_time_window(self) -> TimeWindow: partitions_def = self.run_partitions_def if partitions_def is None: raise DagsterInvariantViolationError("Partitions definition is not defined") if not has_one_dimension_time_window_partitioning(partitions_def=partitions_def): raise DagsterInvariantViolationError( "Expected a TimeWindowPartitionsDefinition or MultiPartitionsDefinition with a" f" single time dimension, but instead found {type(partitions_def)}" ) if self.has_partition_key: return cast( Union[MultiPartitionsDefinition, TimeWindowPartitionsDefinition], partitions_def ).time_window_for_partition_key(self.partition_key) elif self.has_partition_key_range: partition_key_range = self.partition_key_range partitions_def = cast( Union[TimeWindowPartitionsDefinition, MultiPartitionsDefinition], partitions_def ) return TimeWindow( partitions_def.time_window_for_partition_key(partition_key_range.start).start, partitions_def.time_window_for_partition_key(partition_key_range.end).end, ) else: check.failed( "Has a PartitionsDefinition, so should either have a partition key or a partition" " key range" ) def asset_partitions_time_window_for_input(self, input_name: str) -> TimeWindow: """The time window for the partitions of the asset correponding to the given input. Raises an error if either of the following are true: - The input asset has no partitioning. - The input asset is not partitioned with a TimeWindowPartitionsDefinition or a MultiPartitionsDefinition with one time-partitioned dimension. """ asset_layer = self.job_def.asset_layer upstream_asset_key = asset_layer.asset_key_for_input(self.node_handle, input_name) if upstream_asset_key is None: raise ValueError(f"The input '{input_name}' has no corresponding asset") upstream_asset_partitions_def = asset_layer.get(upstream_asset_key).partitions_def if not upstream_asset_partitions_def: raise ValueError( f"Tried to get asset partitions for an input '{input_name}' that does not correspond to a " "partitioned asset." ) if not has_one_dimension_time_window_partitioning(upstream_asset_partitions_def): raise ValueError( f"Tried to get asset partitions for an input '{input_name}' that correponds to a partitioned " "asset that is not time-partitioned." ) upstream_asset_partitions_def = cast( Union[TimeWindowPartitionsDefinition, MultiPartitionsDefinition], upstream_asset_partitions_def, ) partition_key_range = self.asset_partition_key_range_for_input(input_name) return TimeWindow( upstream_asset_partitions_def.time_window_for_partition_key( partition_key_range.start ).start, upstream_asset_partitions_def.time_window_for_partition_key( partition_key_range.end ).end, ) def get_type_loader_context(self) -> "DagsterTypeLoaderContext": return DagsterTypeLoaderContext( plan_data=self.plan_data, execution_data=self._execution_data, log_manager=self._log_manager, step=self.step, output_capture=self._output_capture, known_state=self._known_state, ) def output_observes_source_asset(self, output_name: str) -> bool: """Returns True if this step observes a source asset.""" asset_layer = self.job_def.asset_layer if asset_layer is None: return False asset_key = asset_layer.asset_key_for_output(self.node_handle, output_name) if asset_key is None: return False return asset_layer.get(asset_key).is_observable @property def selected_output_names(self) -> AbstractSet[str]: """Get the output names that correspond to the current selection of assets this execution is expected to materialize.""" # map selected asset keys to the output names they correspond to assets_def = self.job_def.asset_layer.assets_def_for_node(self.node_handle) if assets_def is not None: computation = check.not_none(assets_def.computation) selected_outputs: Set[str] = set() for output_name in self.op.output_dict.keys(): if any( downstream_asset_key in computation.selected_asset_keys or downstream_asset_key in computation.selected_asset_check_keys for downstream_asset_key in self.job_def.asset_layer.downstream_dep_assets_and_checks( self.node_handle, output_name ) ): selected_outputs.add(output_name) return selected_outputs else: return self.op.output_dict.keys()
[docs] class TypeCheckContext: """The ``context`` object available to a type check function on a DagsterType.""" def __init__( self, run_id: str, log_manager: DagsterLogManager, scoped_resources_builder: ScopedResourcesBuilder, dagster_type: DagsterType, ): self._run_id = run_id self._log = log_manager self._resources = scoped_resources_builder.build(dagster_type.required_resource_keys) @public @property def resources(self) -> "Resources": """An object whose attributes contain the resources available to this op.""" return self._resources @public @property def run_id(self) -> str: """The id of this job run.""" return self._run_id @public @property def log(self) -> DagsterLogManager: """Centralized log dispatch from user code.""" return self._log
[docs] class DagsterTypeLoaderContext(StepExecutionContext): """The context object provided to a :py:class:`@dagster_type_loader <dagster_type_loader>`-decorated function during execution. Users should not construct this object directly. """ @public @property def resources(self) -> "Resources": """The resources available to the type loader, specified by the `required_resource_keys` argument of the decorator.""" return super(DagsterTypeLoaderContext, self).resources @public @property def job_def(self) -> "JobDefinition": """The underlying job definition being executed.""" return super(DagsterTypeLoaderContext, self).job_def @property def repository_def(self) -> "RepositoryDefinition": return super(DagsterTypeLoaderContext, self).repository_def @public @property def op_def(self) -> "OpDefinition": """The op for which type loading is occurring.""" return super(DagsterTypeLoaderContext, self).op_def