Ask AI

Source code for dagster._core.definitions.schedule_definition

import copy
import logging
import warnings
from contextlib import ExitStack
from datetime import datetime
from enum import Enum
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Iterator,
    List,
    Mapping,
    NamedTuple,
    Optional,
    Sequence,
    Set,
    TypeVar,
    Union,
    cast,
)

from typing_extensions import TypeAlias

import dagster._check as check
from dagster._annotations import deprecated, deprecated_param, public
from dagster._core.decorator_utils import has_at_least_one_parameter
from dagster._core.definitions.instigation_logger import InstigationLogger
from dagster._core.definitions.job_definition import JobDefinition
from dagster._core.definitions.metadata import RawMetadataMapping, normalize_metadata
from dagster._core.definitions.metadata.metadata_value import MetadataValue
from dagster._core.definitions.resource_annotation import get_resource_args
from dagster._core.definitions.run_config import CoercibleToRunConfig
from dagster._core.definitions.run_request import RunRequest, SkipReason
from dagster._core.definitions.scoped_resources_builder import Resources, ScopedResourcesBuilder
from dagster._core.definitions.target import (
    ANONYMOUS_ASSET_JOB_PREFIX,
    AutomationTarget,
    ExecutableDefinition,
)
from dagster._core.definitions.unresolved_asset_job_definition import UnresolvedAssetJobDefinition
from dagster._core.definitions.utils import check_valid_name
from dagster._core.errors import (
    DagsterInvalidDefinitionError,
    DagsterInvalidInvocationError,
    DagsterInvariantViolationError,
    ScheduleExecutionError,
    user_code_error_boundary,
)
from dagster._core.instance import DagsterInstance
from dagster._core.instance.ref import InstanceRef
from dagster._core.storage.dagster_run import DagsterRun
from dagster._serdes import whitelist_for_serdes
from dagster._time import get_timezone
from dagster._utils import IHasInternalInit, ensure_gen
from dagster._utils.merger import merge_dicts
from dagster._utils.schedules import has_out_of_range_cron_interval, is_valid_cron_schedule
from dagster._utils.tags import normalize_tags

if TYPE_CHECKING:
    from dagster import ResourceDefinition
    from dagster._core.definitions.asset_selection import CoercibleToAssetSelection
    from dagster._core.definitions.assets import AssetsDefinition
    from dagster._core.definitions.repository_definition import RepositoryDefinition
    from dagster._core.definitions.run_config import RunConfig

T = TypeVar("T")

RunRequestIterator: TypeAlias = Iterator[Union[RunRequest, SkipReason]]

ScheduleEvaluationFunctionReturn: TypeAlias = Union[
    RunRequest, SkipReason, CoercibleToRunConfig, RunRequestIterator, Sequence[RunRequest], None
]
RawScheduleEvaluationFunction: TypeAlias = Callable[..., ScheduleEvaluationFunctionReturn]

ScheduleRunConfigFunction: TypeAlias = Union[
    Callable[["ScheduleEvaluationContext"], CoercibleToRunConfig],
    Callable[[], CoercibleToRunConfig],
]

ScheduleTagsFunction: TypeAlias = Callable[["ScheduleEvaluationContext"], Mapping[str, str]]
ScheduleShouldExecuteFunction: TypeAlias = Callable[["ScheduleEvaluationContext"], bool]
ScheduleExecutionFunction: TypeAlias = Union[
    Callable[["ScheduleEvaluationContext"], Any],
    "DecoratedScheduleFunction",
]


@whitelist_for_serdes
class DefaultScheduleStatus(Enum):
    RUNNING = "RUNNING"
    STOPPED = "STOPPED"


def get_or_create_schedule_context(
    fn: Callable[..., Any], *args: Any, **kwargs: Any
) -> "ScheduleEvaluationContext":
    """Based on the passed resource function and the arguments passed to it, returns the
    user-passed ScheduleEvaluationContext or creates one if it is not passed.

    Raises an exception if the user passes more than one argument or if the user-provided
    function requires a context parameter but none is passed.
    """
    from dagster._config.pythonic_config import is_coercible_to_resource
    from dagster._core.definitions.sensor_definition import get_context_param_name

    context_param_name = get_context_param_name(fn)

    kwarg_keys_non_resource = set(kwargs.keys()) - {param.name for param in get_resource_args(fn)}
    if len(args) + len(kwarg_keys_non_resource) > 1:
        raise DagsterInvalidInvocationError(
            "Schedule invocation received multiple non-resource arguments. Only a first "
            "positional context parameter should be provided when invoking."
        )

    if any(is_coercible_to_resource(arg) for arg in args):
        raise DagsterInvalidInvocationError(
            "If directly invoking a schedule, you may not provide resources as"
            " positional arguments, only as keyword arguments."
        )

    context: Optional[ScheduleEvaluationContext] = None

    if len(args) > 0:
        context = check.opt_inst(args[0], ScheduleEvaluationContext)
    elif len(kwargs) > 0:
        if context_param_name and context_param_name not in kwargs:
            raise DagsterInvalidInvocationError(
                f"Schedule invocation expected argument '{context_param_name}'."
            )
        context = check.opt_inst(
            kwargs.get(context_param_name or "context"), ScheduleEvaluationContext
        )
    elif context_param_name:
        # If the context parameter is present but no value was provided, we error
        raise DagsterInvalidInvocationError(
            "Schedule evaluation function expected context argument, but no context argument "
            "was provided when invoking."
        )

    context = context or build_schedule_context()
    resource_args_from_kwargs = {}

    resource_args = {param.name for param in get_resource_args(fn)}
    for resource_arg in resource_args:
        if resource_arg in kwargs:
            resource_args_from_kwargs[resource_arg] = kwargs[resource_arg]

    if resource_args_from_kwargs:
        return context.merge_resources(resource_args_from_kwargs)

    return context


[docs] class ScheduleEvaluationContext: """The context object available as the first argument to various functions defined on a :py:class:`dagster.ScheduleDefinition`. A ``ScheduleEvaluationContext`` object is passed as the first argument to ``run_config_fn``, ``tags_fn``, and ``should_execute``. **Users should not instantiate this object directly**. To construct a ``ScheduleEvaluationContext`` for testing purposes, use :py:func:`dagster.build_schedule_context`. Example: .. code-block:: python from dagster import schedule, ScheduleEvaluationContext @schedule def the_schedule(context: ScheduleEvaluationContext): ... """ __slots__ = [ "_instance_ref", "_scheduled_execution_time", "_exit_stack", "_instance", "_log_key", "_logger", "_repository_name", "_resource_defs", "_schedule_name", "_resources_cm", "_resources", "_cm_scope_entered", "_repository_def", ] def __init__( self, instance_ref: Optional[InstanceRef], scheduled_execution_time: Optional[datetime], log_key: Optional[Sequence[str]] = None, repository_name: Optional[str] = None, schedule_name: Optional[str] = None, resources: Optional[Mapping[str, "ResourceDefinition"]] = None, repository_def: Optional["RepositoryDefinition"] = None, ): from dagster._core.definitions.repository_definition import RepositoryDefinition self._exit_stack = ExitStack() self._instance = None self._instance_ref = check.opt_inst_param(instance_ref, "instance_ref", InstanceRef) self._scheduled_execution_time = check.opt_inst_param( scheduled_execution_time, "scheduled_execution_time", datetime ) self._log_key = log_key # Kept for backwards compatibility if the schedule log key is not passed into the # schedule evaluation. if not self._log_key and repository_name and schedule_name and scheduled_execution_time: self._log_key = [ repository_name, schedule_name, scheduled_execution_time.strftime("%Y%m%d_%H%M%S"), ] self._logger = None self._repository_name = repository_name self._schedule_name = schedule_name # Wait to set resources unless they're accessed self._resource_defs = resources self._resources = None self._cm_scope_entered = False self._repository_def = check.opt_inst_param( repository_def, "repository_def", RepositoryDefinition ) def __enter__(self) -> "ScheduleEvaluationContext": self._cm_scope_entered = True return self def __exit__(self, *exc) -> None: self._exit_stack.close() self._logger = None @property def resource_defs(self) -> Optional[Mapping[str, "ResourceDefinition"]]: return self._resource_defs @public @property def resources(self) -> Resources: """Mapping of resource key to resource definition to be made available during schedule execution. """ from dagster._core.definitions.scoped_resources_builder import IContainsGenerator from dagster._core.execution.build_resources import build_resources if not self._resources: # Early exit if no resources are defined. This skips unnecessary initialization # entirely. This allows users to run user code servers in cases where they # do not have access to the instance if they use a subset of features do # that do not require instance access. In this case, if they do not use # resources on schedules they do not require the instance, so we do not # instantiate it # # Tracking at https://github.com/dagster-io/dagster/issues/14345 if not self._resource_defs: self._resources = ScopedResourcesBuilder.build_empty() return self._resources instance = self.instance if self._instance or self._instance_ref else None resources_cm = build_resources(resources=self._resource_defs, instance=instance) self._resources = self._exit_stack.enter_context(resources_cm) if isinstance(self._resources, IContainsGenerator) and not self._cm_scope_entered: self._exit_stack.close() raise DagsterInvariantViolationError( "At least one provided resource is a generator, but attempting to access" " resources outside of context manager scope. You can use the following syntax" " to open a context manager: `with build_sensor_context(...) as context:`" ) return self._resources def merge_resources(self, resources_dict: Mapping[str, Any]) -> "ScheduleEvaluationContext": """Merge the specified resources into this context. This method is intended to be used by the Dagster framework, and should not be called by user code. Args: resources_dict (Mapping[str, Any]): The resources to replace in the context. """ check.invariant( self._resources is None, "Cannot merge resources in context that has been initialized." ) from dagster._core.execution.build_resources import wrap_resources_for_execution return ScheduleEvaluationContext( instance_ref=self._instance_ref, scheduled_execution_time=self._scheduled_execution_time, repository_name=self._repository_name, schedule_name=self._schedule_name, resources={ **(self._resource_defs or {}), **wrap_resources_for_execution(resources_dict), }, repository_def=self._repository_def, ) @public @property def instance(self) -> "DagsterInstance": """DagsterInstance: The current :py:class:`~dagster.DagsterInstance`.""" # self._instance_ref should only ever be None when this ScheduleEvaluationContext was # constructed under test. if not self._instance_ref: raise DagsterInvariantViolationError( "Attempted to initialize dagster instance, but no instance reference was provided." ) if not self._instance: self._instance = self._exit_stack.enter_context( DagsterInstance.from_ref(self._instance_ref) ) return cast(DagsterInstance, self._instance) @property def instance_ref(self) -> Optional[InstanceRef]: """The serialized instance configured to run the schedule.""" return self._instance_ref @public @property def scheduled_execution_time(self) -> datetime: """The time in which the execution was scheduled to happen. May differ slightly from both the actual execution time and the time at which the run config is computed. """ if self._scheduled_execution_time is None: check.failed( "Attempting to access scheduled_execution_time, but no scheduled_execution_time was" " set on this context" ) return self._scheduled_execution_time @property def log(self) -> logging.Logger: if self._logger is None: if not self._instance_ref: self._logger = self._exit_stack.enter_context( InstigationLogger( self._log_key, repository_name=self._repository_name, instigator_name=self._schedule_name, ) ) else: self._logger = self._exit_stack.enter_context( InstigationLogger( self._log_key, self.instance, repository_name=self._repository_name, instigator_name=self._schedule_name, ) ) return self._logger def has_captured_logs(self): return self._logger and self._logger.has_captured_logs() @property def log_key(self) -> Optional[Sequence[str]]: return self._log_key @property def repository_def(self) -> "RepositoryDefinition": if not self._repository_def: raise DagsterInvariantViolationError( "Attempted to access repository_def, but no repository_def was provided." ) return self._repository_def
class DecoratedScheduleFunction(NamedTuple): """Wrapper around the decorated schedule function. Keeps track of both to better support the optimal return value for direct invocation of the evaluation function. """ decorated_fn: RawScheduleEvaluationFunction wrapped_fn: Callable[[ScheduleEvaluationContext], RunRequestIterator] has_context_arg: bool
[docs] def build_schedule_context( instance: Optional[DagsterInstance] = None, scheduled_execution_time: Optional[datetime] = None, resources: Optional[Mapping[str, object]] = None, repository_def: Optional["RepositoryDefinition"] = None, instance_ref: Optional["InstanceRef"] = None, ) -> ScheduleEvaluationContext: """Builds schedule execution context using the provided parameters. The instance provided to ``build_schedule_context`` must be persistent; :py:class:`DagsterInstance.ephemeral() <DagsterInstance>` will result in an error. Args: instance (Optional[DagsterInstance]): The Dagster instance configured to run the schedule. scheduled_execution_time (datetime): The time in which the execution was scheduled to happen. May differ slightly from both the actual execution time and the time at which the run config is computed. Examples: .. code-block:: python context = build_schedule_context(instance) """ from dagster._core.execution.build_resources import wrap_resources_for_execution check.opt_inst_param(instance, "instance", DagsterInstance) return ScheduleEvaluationContext( instance_ref=( instance_ref if instance_ref else instance.get_ref() if instance and instance.is_persistent else None ), scheduled_execution_time=check.opt_inst_param( scheduled_execution_time, "scheduled_execution_time", datetime ), resources=wrap_resources_for_execution(resources), repository_def=repository_def, )
@whitelist_for_serdes( storage_field_names={"log_key": "captured_log_key"}, ) class ScheduleExecutionData( NamedTuple( "_ScheduleExecutionData", [ ("run_requests", Optional[Sequence[RunRequest]]), ("skip_message", Optional[str]), ("log_key", Optional[Sequence[str]]), ], ) ): def __new__( cls, run_requests: Optional[Sequence[RunRequest]] = None, skip_message: Optional[str] = None, log_key: Optional[Sequence[str]] = None, ): check.opt_sequence_param(run_requests, "run_requests", RunRequest) check.opt_str_param(skip_message, "skip_message") check.opt_list_param(log_key, "log_key", str) check.invariant( not (run_requests and skip_message), "Found both skip data and run request data" ) return super(ScheduleExecutionData, cls).__new__( cls, run_requests=run_requests, skip_message=skip_message, log_key=log_key, ) def validate_and_get_schedule_resource_dict( resources: Resources, schedule_name: str, required_resource_keys: Set[str] ) -> Dict[str, Any]: """Validates that the context has all the required resources and returns a dictionary of resource key to resource object. """ for k in required_resource_keys: if not hasattr(resources, k): raise DagsterInvalidDefinitionError( f"Resource with key '{k}' required by schedule '{schedule_name}' was not provided." ) return {k: resources.original_resource_dict.get(k) for k in required_resource_keys}
[docs] @deprecated_param( param="environment_vars", breaking_version="2.0", additional_warn_text=( "It is no longer necessary. Schedules will have access to all environment variables set in" " the containing environment, and can safely be deleted." ), ) class ScheduleDefinition(IHasInternalInit): """Defines a schedule that targets a job. Args: name (Optional[str]): The name of the schedule to create. Defaults to the job name plus ``_schedule``. cron_schedule (Union[str, Sequence[str]]): A valid cron string or sequence of cron strings specifying when the schedule will run, e.g., ``45 23 * * 6`` for a schedule that runs at 11:45 PM every Saturday. If a sequence is provided, then the schedule will run for the union of all execution times for the provided cron strings, e.g., ``['45 23 * * 6', '30 9 * * 0]`` for a schedule that runs at 11:45 PM every Saturday and 9:30 AM every Sunday. execution_fn (Callable[ScheduleEvaluationContext]): The core evaluation function for the schedule, which is run at an interval to determine whether a run should be launched or not. Takes a :py:class:`~dagster.ScheduleEvaluationContext`. This function must return a generator, which must yield either a single :py:class:`~dagster.SkipReason` or one or more :py:class:`~dagster.RunRequest` objects. run_config (Optional[Union[RunConfig, Mapping]]): The config that parameterizes this execution, as a dict. run_config_fn (Optional[Callable[[ScheduleEvaluationContext], [Mapping]]]): A function that takes a :py:class:`~dagster.ScheduleEvaluationContext` object and returns the run configuration that parameterizes this execution, as a dict. **Note**: Only one of the following may be set: You may set ``run_config``, ``run_config_fn``, or ``execution_fn``. tags (Optional[Mapping[str, str]]): A set of key-value tags that annotate the schedule and can be used for searching and filtering in the UI. If no `execution_fn` is provided, then these will also be automatically attached to runs launched by the schedule. tags_fn (Optional[Callable[[ScheduleEvaluationContext], Optional[Mapping[str, str]]]]): A function that generates tags to attach to the schedule's runs. Takes a :py:class:`~dagster.ScheduleEvaluationContext` and returns a dictionary of tags (string key-value pairs). **Note**: Only one of the following may be set: ``tags``, ``tags_fn``, or ``execution_fn``. should_execute (Optional[Callable[[ScheduleEvaluationContext], bool]]): A function that runs at schedule execution time to determine whether a schedule should execute or skip. Takes a :py:class:`~dagster.ScheduleEvaluationContext` and returns a boolean (``True`` if the schedule should execute). Defaults to a function that always returns ``True``. execution_timezone (Optional[str]): Timezone in which the schedule should run. Supported strings for timezones are the ones provided by the `IANA time zone database <https://www.iana.org/time-zones>`_ - e.g. ``"America/Los_Angeles"``. description (Optional[str]): A human-readable description of the schedule. job (Optional[Union[GraphDefinition, JobDefinition]]): The job that should execute when this schedule runs. default_status (DefaultScheduleStatus): If set to ``RUNNING``, the schedule will start as running. The default status can be overridden from the Dagster UI or via the GraphQL API. required_resource_keys (Optional[Set[str]]): The set of resource keys required by the schedule. target (Optional[Union[CoercibleToAssetSelection, AssetsDefinition, JobDefinition, UnresolvedAssetJobDefinition]]): The target that the schedule will execute. It can take :py:class:`~dagster.AssetSelection` objects and anything coercible to it (e.g. `str`, `Sequence[str]`, `AssetKey`, `AssetsDefinition`). It can also accept :py:class:`~dagster.JobDefinition` (a function decorated with `@job` is an instance of `JobDefinition`) and `UnresolvedAssetJobDefinition` (the return value of :py:func:`~dagster.define_asset_job`) objects. This is an experimental parameter that will replace `job` and `job_name`. metadata (Optional[Mapping[str, Any]]): A set of metadata entries that annotate the schedule. Values will be normalized to typed `MetadataValue` objects. Not currently shown in the UI but available at runtime via `ScheduleEvaluationContext.repository_def.get_schedule_def(<name>).metadata`. """ def with_updated_job(self, new_job: ExecutableDefinition) -> "ScheduleDefinition": """Returns a copy of this schedule with the job replaced. Args: job (ExecutableDefinition): The job that should execute when this schedule runs. """ return ScheduleDefinition.dagster_internal_init( name=self.name, cron_schedule=self._cron_schedule, job_name=None, # job name will be derived from the passed job execution_timezone=self.execution_timezone, execution_fn=self._execution_fn, description=self.description, job=new_job, default_status=self.default_status, environment_vars=self._environment_vars, required_resource_keys=self._raw_required_resource_keys, run_config=None, # run_config, tags, should_execute encapsulated in execution_fn run_config_fn=None, tags=None, tags_fn=None, metadata=self.metadata, should_execute=None, target=None, ) def __init__( self, name: Optional[str] = None, *, cron_schedule: Optional[Union[str, Sequence[str]]] = None, job_name: Optional[str] = None, run_config: Optional[Union["RunConfig", Mapping[str, Any]]] = None, run_config_fn: Optional[ScheduleRunConfigFunction] = None, tags: Optional[Mapping[str, str]] = None, tags_fn: Optional[ScheduleTagsFunction] = None, metadata: Optional[RawMetadataMapping] = None, should_execute: Optional[ScheduleShouldExecuteFunction] = None, environment_vars: Optional[Mapping[str, str]] = None, execution_timezone: Optional[str] = None, execution_fn: Optional[ScheduleExecutionFunction] = None, description: Optional[str] = None, job: Optional[ExecutableDefinition] = None, default_status: DefaultScheduleStatus = DefaultScheduleStatus.STOPPED, required_resource_keys: Optional[Set[str]] = None, target: Optional[ Union[ "CoercibleToAssetSelection", "AssetsDefinition", "JobDefinition", "UnresolvedAssetJobDefinition", ] ] = None, ): from dagster._core.definitions.run_config import convert_config_input self._cron_schedule = check.inst_param(cron_schedule, "cron_schedule", (str, Sequence)) if not isinstance(self._cron_schedule, str): check.sequence_param(self._cron_schedule, "cron_schedule", of_type=str) # type: ignore if not is_valid_cron_schedule(self._cron_schedule): # type: ignore raise DagsterInvalidDefinitionError( f"Found invalid cron schedule '{self._cron_schedule}' for schedule '{name}''. " "Dagster recognizes standard cron expressions consisting of 5 fields." ) if has_out_of_range_cron_interval(self._cron_schedule): # type: ignore warnings.warn( "Found a cron schedule with an interval greater than the expected range for" f" schedule '{name}'. Dagster currently normalizes this to an interval that may" " fire more often than expected. You may want to break this cron schedule up into" " a sequence of cron schedules. See" " https://github.com/dagster-io/dagster/issues/15294 for more information." ) if ( sum( [ int(target is not None), int(job_name is not None), int(job is not None), ] ) > 1 ): raise DagsterInvalidDefinitionError( "Attempted to provide more than one of 'job', 'job_name', and 'target'" "params to ScheduleDefinition. Must provide only one." ) if target: self._target = AutomationTarget.from_coercible( target, automation_name=check.not_none( name, "If you specify target you must specify schedule name" ), ) elif job: self._target = AutomationTarget.from_coercible(job) elif job_name: self._target = AutomationTarget( resolvable_to_job=check.str_param(job_name, "job_name"), ) else: check.failed("Must provide target, job, or job_name") if name: self._name = check_valid_name(name) elif job_name: self._name = job_name + "_schedule" elif job: self._name = job.name + "_schedule" self._description = check.opt_str_param(description, "description") self._environment_vars = check.opt_nullable_mapping_param( environment_vars, "environment_vars", key_type=str, value_type=str ) self._execution_timezone = check.opt_str_param(execution_timezone, "execution_timezone") if execution_fn and (run_config_fn or tags_fn or should_execute or run_config): raise DagsterInvalidDefinitionError( "Attempted to provide both execution_fn and individual run_config/tags_fn arguments " "to ScheduleDefinition. Must provide only one of the two." ) elif execution_fn: self._execution_fn: Optional[Union[Callable[..., Any], DecoratedScheduleFunction]] = ( None ) if isinstance(execution_fn, DecoratedScheduleFunction): self._execution_fn = execution_fn else: self._execution_fn = check.opt_callable_param(execution_fn, "execution_fn") self._tags = normalize_tags(tags, allow_private_system_tags=False, warning_stacklevel=4) self._tags_fn = None self._run_config_fn = None else: if run_config_fn and run_config: raise DagsterInvalidDefinitionError( "Attempted to provide both run_config_fn and run_config as arguments" " to ScheduleDefinition. Must provide only one of the two." ) def _default_run_config_fn(context: ScheduleEvaluationContext) -> CoercibleToRunConfig: return dict( check.opt_mapping_param( convert_config_input(run_config), "run_config", key_type=str ) ) self._run_config_fn = check.opt_callable_param( run_config_fn, "run_config_fn", default=_default_run_config_fn ) if tags_fn and tags: raise DagsterInvalidDefinitionError( "Attempted to provide both tags_fn and tags as arguments" " to ScheduleDefinition. Must provide only one of the two." ) self._tags = normalize_tags(tags, allow_private_system_tags=False, warning_stacklevel=4) if tags_fn: self._tags_fn = check.opt_callable_param( tags_fn, "tags_fn", default=lambda _context: cast(Mapping[str, str], {}) ) else: tags_fn = lambda _context: self._tags or {} self._tags_fn = tags_fn self._should_execute: ScheduleShouldExecuteFunction = check.opt_callable_param( should_execute, "should_execute", default=lambda _context: True ) # Several type-ignores are present in this function to work around bugs in mypy # inference. def _execution_fn(context: ScheduleEvaluationContext) -> RunRequestIterator: with user_code_error_boundary( ScheduleExecutionError, lambda: ( f"Error occurred during the execution of should_execute for schedule {name}" ), ): if not self._should_execute(context): yield SkipReason(f"should_execute function for {name} returned false.") return with user_code_error_boundary( ScheduleExecutionError, lambda: ( f"Error occurred during the execution of run_config_fn for schedule {name}" ), ): _run_config_fn = check.not_none(self._run_config_fn) evaluated_run_config = copy.deepcopy( _run_config_fn(context) if has_at_least_one_parameter(_run_config_fn) else _run_config_fn() # type: ignore # (strict type guard) ) with user_code_error_boundary( ScheduleExecutionError, lambda: f"Error occurred during the execution of tags_fn for schedule {name}", ): evaluated_tags = normalize_tags( tags_fn(context), allow_private_system_tags=False ) yield RunRequest( run_key=None, run_config=evaluated_run_config, tags=evaluated_tags, ) self._execution_fn = _execution_fn if self._execution_timezone: try: # Verify that the timezone can be loaded get_timezone(self._execution_timezone) except Exception as e: raise DagsterInvalidDefinitionError( f"Invalid execution timezone {self._execution_timezone} for {name}" ) from e self._default_status = check.inst_param( default_status, "default_status", DefaultScheduleStatus ) resource_arg_names: Set[str] = ( {arg.name for arg in get_resource_args(self._execution_fn.decorated_fn)} if isinstance(self._execution_fn, DecoratedScheduleFunction) else set() ) check.param_invariant( len(required_resource_keys or []) == 0 or len(resource_arg_names) == 0, "Cannot specify resource requirements in both @schedule decorator and as arguments to" " the decorated function", ) self._raw_required_resource_keys = check.opt_set_param( required_resource_keys, "required_resource_keys", of_type=str ) self._required_resource_keys = self._raw_required_resource_keys or resource_arg_names self._metadata = normalize_metadata( check.opt_mapping_param(metadata, "metadata", key_type=str) ) @staticmethod def dagster_internal_init( *, name: Optional[str], cron_schedule: Optional[Union[str, Sequence[str]]], job_name: Optional[str], run_config: Optional[Any], run_config_fn: Optional[ScheduleRunConfigFunction], tags: Optional[Mapping[str, str]], tags_fn: Optional[ScheduleTagsFunction], metadata: Optional[RawMetadataMapping], should_execute: Optional[ScheduleShouldExecuteFunction], environment_vars: Optional[Mapping[str, str]], execution_timezone: Optional[str], execution_fn: Optional[ScheduleExecutionFunction], description: Optional[str], job: Optional[ExecutableDefinition], default_status: DefaultScheduleStatus, required_resource_keys: Optional[Set[str]], target: Optional[ Union[ "CoercibleToAssetSelection", "AssetsDefinition", "JobDefinition", "UnresolvedAssetJobDefinition", ] ], ) -> "ScheduleDefinition": return ScheduleDefinition( name=name, cron_schedule=cron_schedule, job_name=job_name, run_config=run_config, run_config_fn=run_config_fn, tags=tags, tags_fn=tags_fn, metadata=metadata, should_execute=should_execute, environment_vars=environment_vars, execution_timezone=execution_timezone, execution_fn=execution_fn, description=description, job=job, default_status=default_status, required_resource_keys=required_resource_keys, target=target, ) def __call__(self, *args, **kwargs) -> ScheduleEvaluationFunctionReturn: from dagster._core.definitions.decorators.schedule_decorator import ( DecoratedScheduleFunction, ) from dagster._core.definitions.sensor_definition import get_context_param_name if not isinstance(self._execution_fn, DecoratedScheduleFunction): raise DagsterInvalidInvocationError( "Schedule invocation is only supported for schedules created via the schedule " "decorators." ) context_param_name = get_context_param_name(self._execution_fn.decorated_fn) context = get_or_create_schedule_context(self._execution_fn.decorated_fn, *args, **kwargs) context_param = {context_param_name: context} if context_param_name else {} resources = validate_and_get_schedule_resource_dict( context.resources, self._name, self._required_resource_keys ) result = self._execution_fn.decorated_fn(**context_param, **resources) if isinstance(result, dict): return copy.deepcopy(result) else: return result @public @property def name(self) -> str: """str: The name of the schedule.""" return self._name @public @property def job_name(self) -> str: """str: The name of the job targeted by this schedule.""" return self._target.job_name @public @property def description(self) -> Optional[str]: """Optional[str]: A description for this schedule.""" return self._description @public @property def cron_schedule(self) -> Union[str, Sequence[str]]: """Union[str, Sequence[str]]: The cron schedule representing when this schedule will be evaluated.""" return self._cron_schedule # type: ignore @public @deprecated( breaking_version="2.0", additional_warn_text="Setting this property no longer has any effect.", ) @property def environment_vars(self) -> Optional[Mapping[str, str]]: """Mapping[str, str]: Environment variables to export to the cron schedule.""" return self._environment_vars @public @property def required_resource_keys(self) -> Set[str]: """Set[str]: The set of keys for resources that must be provided to this schedule.""" return self._required_resource_keys @public @property def execution_timezone(self) -> Optional[str]: """Optional[str]: The timezone in which this schedule will be evaluated.""" return self._execution_timezone @public @property def tags(self) -> Mapping[str, str]: """Mapping[str, str]: The tags for this schedule.""" return self._tags @public @property def metadata(self) -> Mapping[str, MetadataValue]: """Mapping[str, str]: The metadata for this schedule.""" return self._metadata @public @property def job(self) -> Union[JobDefinition, UnresolvedAssetJobDefinition]: """Union[JobDefinition, UnresolvedAssetJobDefinition]: The job that is targeted by this schedule. """ if self._target.has_job_def: return self._target.job_def raise DagsterInvalidDefinitionError("No job was provided to ScheduleDefinition.") def evaluate_tick(self, context: "ScheduleEvaluationContext") -> ScheduleExecutionData: """Evaluate schedule using the provided context. Args: context (ScheduleEvaluationContext): The context with which to evaluate this schedule. Returns: ScheduleExecutionData: Contains list of run requests, or skip message if present. """ from dagster._core.definitions.partition import CachingDynamicPartitionsLoader check.inst_param(context, "context", ScheduleEvaluationContext) execution_fn: Callable[..., "ScheduleEvaluationFunctionReturn"] if isinstance(self._execution_fn, DecoratedScheduleFunction): execution_fn = self._execution_fn.wrapped_fn else: execution_fn = cast( Callable[..., "ScheduleEvaluationFunctionReturn"], self._execution_fn, ) result = list(ensure_gen(execution_fn(context))) skip_message: Optional[str] = None run_requests: List[RunRequest] = [] if not result or result == [None]: run_requests = [] skip_message = "Schedule function returned an empty result" elif len(result) == 1: item = check.inst(result[0], (SkipReason, RunRequest)) if isinstance(item, RunRequest): run_requests = [item] skip_message = None elif isinstance(item, SkipReason): run_requests = [] skip_message = item.skip_message else: # NOTE: mypy is not correctly reading this cast-- not sure why # (pyright reads it fine). Hence the type-ignores below. result = cast(List[RunRequest], check.is_list(result, of_type=RunRequest)) check.invariant( not any(not request.run_key for request in result), "Schedules that return multiple RunRequests must specify a run_key in each" " RunRequest", ) run_requests = result skip_message = None dynamic_partitions_store = ( CachingDynamicPartitionsLoader(context.instance) if context.instance_ref else None ) # clone all the run requests with resolved tags and config resolved_run_requests = [] for run_request in run_requests: if run_request.partition_key and not run_request.has_resolved_partition(): if context.repository_def is None: raise DagsterInvariantViolationError( "Must provide repository def to build_schedule_context when yielding" " partitioned run requests" ) scheduled_target = context.repository_def.get_job(self._target.job_name) resolved_request = run_request.with_resolved_tags_and_config( target_definition=scheduled_target, dynamic_partitions_requests=[], current_time=context.scheduled_execution_time, dynamic_partitions_store=dynamic_partitions_store, ) else: resolved_request = run_request resolved_run_requests.append( resolved_request.with_replaced_attrs( tags=merge_dicts(resolved_request.tags, DagsterRun.tags_for_schedule(self)) ) ) return ScheduleExecutionData( run_requests=resolved_run_requests, skip_message=skip_message, log_key=context.log_key if context.has_captured_logs() else None, ) @property def target(self) -> AutomationTarget: return self._target @public @property def default_status(self) -> DefaultScheduleStatus: """DefaultScheduleStatus: The default status for this schedule when it is first loaded in a code location. """ return self._default_status @property def has_anonymous_job(self) -> bool: return bool(self._target and self._target.job_name.startswith(ANONYMOUS_ASSET_JOB_PREFIX))