import re
from enum import Enum
from typing import Any, Dict, List, Mapping, Optional, Set, Type, cast
from pydantic import BaseModel, ConfigDict
from typing_extensions import TypeVar
import dagster._check as check
from dagster import (
Field as DagsterField,
Shape,
)
from dagster._config.field_utils import EnvVar, IntEnvVar, Permissive
from dagster._config.pythonic_config.attach_other_object_to_context import (
IAttachDifferentObjectToOpContext as IAttachDifferentObjectToOpContext,
)
from dagster._config.pythonic_config.conversion_utils import (
_convert_pydantic_field,
safe_is_subclass,
)
from dagster._config.pythonic_config.type_check_utils import is_literal
from dagster._config.pythonic_config.typing_utils import BaseConfigMeta
from dagster._core.definitions.definition_config_schema import DefinitionConfigSchema
from dagster._core.errors import (
DagsterInvalidConfigDefinitionError,
DagsterInvalidDefinitionError,
DagsterInvalidInvocationError,
DagsterInvalidPythonicConfigDefinitionError,
)
from dagster._model.pydantic_compat_layer import (
ModelFieldCompat,
PydanticUndefined,
model_config,
model_fields,
)
from dagster._utils.cached_method import CACHED_METHOD_CACHE_FIELD
try:
from functools import cached_property # type: ignore # (py37 compat)
except ImportError:
class cached_property:
pass
INTERNAL_MARKER = "__internal__"
def _is_field_internal(name: str) -> bool:
return name.endswith(INTERNAL_MARKER)
# ensure that this ends with the internal marker so we can do a single check
assert CACHED_METHOD_CACHE_FIELD.endswith(INTERNAL_MARKER)
def _is_frozen_pydantic_error(e: Exception) -> bool:
"""Parses an error to determine if it is a Pydantic error indicating that the instance
is immutable. We use this to attach a more helpful error message.
"""
return "Instance is frozen" in str( # Pydantic 2.x error
e
) or "is immutable and does not support item assignment" in str( # Pydantic 1.x error
e
)
class MakeConfigCacheable(BaseModel):
"""This class centralizes and implements all the chicanery we need in order
to support caching decorators. If we decide this is a bad idea we can remove it
all in one go.
"""
# - Frozen, to avoid complexity caused by mutation.
# - arbitrary_types_allowed, to allow non-model class params to be validated with isinstance.
# - Avoid pydantic reading a cached property class as part of the schema.
model_config = ConfigDict(
frozen=True, arbitrary_types_allowed=True, ignored_types=(cached_property,)
)
def __setattr__(self, name: str, value: Any):
from dagster._config.pythonic_config.resource import ConfigurableResourceFactory
# This is a hack to allow us to set attributes on the class that are not part of the
# config schema. Pydantic will normally raise an error if you try to set an attribute
# that is not part of the schema.
if _is_field_internal(name):
object.__setattr__(self, name, value)
return
try:
return super().__setattr__(name, value)
except (TypeError, ValueError) as e:
clsname = self.__class__.__name__
if _is_frozen_pydantic_error(e):
if isinstance(self, ConfigurableResourceFactory):
raise DagsterInvalidInvocationError(
f"'{clsname}' is a Pythonic resource and does not support item assignment,"
" as it inherits from 'pydantic.BaseModel' with frozen=True. If trying to"
" maintain state on this resource, consider building a separate, stateful"
" client class, and provide a method on the resource to construct and"
" return the stateful client."
) from e
else:
raise DagsterInvalidInvocationError(
f"'{clsname}' is a Pythonic config class and does not support item"
" assignment, as it inherits from 'pydantic.BaseModel' with frozen=True."
) from e
elif "object has no field" in str(e):
field_name = check.not_none(
re.search(r"object has no field \"(.*)\"", str(e))
).group(1)
if isinstance(self, ConfigurableResourceFactory):
raise DagsterInvalidInvocationError(
f"'{clsname}' is a Pythonic resource and does not support manipulating"
f" undeclared attribute '{field_name}' as it inherits from"
" 'pydantic.BaseModel' without extra=\"allow\". If trying to maintain"
" state on this resource, consider building a separate, stateful client"
" class, and provide a method on the resource to construct and return the"
" stateful client."
) from e
else:
raise DagsterInvalidInvocationError(
f"'{clsname}' is a Pythonic config class and does not support manipulating"
f" undeclared attribute '{field_name}' as it inherits from"
" 'pydantic.BaseModel' without extra=\"allow\"."
) from e
else:
raise
T = TypeVar("T")
def ensure_env_vars_set_post_init(set_value: T, input_value: Any) -> T:
"""Pydantic 2.x utility. Ensures that Pydantic field values are set to the appropriate
EnvVar or IntEnvVar objects post-model-instantiation, since Pydantic 2.x will cast
EnvVar or IntEnvVar values to raw strings or ints as part of the model instantiation process.
"""
if isinstance(set_value, dict) and isinstance(input_value, dict):
for key, value in input_value.items():
if isinstance(value, (EnvVar, IntEnvVar)):
set_value[key] = value
elif isinstance(value, dict):
set_value[key] = ensure_env_vars_set_post_init(set_value.get(key) or {}, value)
elif isinstance(value, list):
set_value[key] = ensure_env_vars_set_post_init(set_value.get(key) or [], value)
if isinstance(set_value, List) and isinstance(input_value, List):
for i in range(len(set_value)):
value = input_value[i]
if isinstance(value, (EnvVar, IntEnvVar)):
set_value[i] = value
elif isinstance(value, (dict, list)):
set_value[i] = ensure_env_vars_set_post_init(set_value[i], value)
return set_value
[docs]
class Config(MakeConfigCacheable, metaclass=BaseConfigMeta):
"""Base class for Dagster configuration models, used to specify config schema for
ops and assets. Subclasses :py:class:`pydantic.BaseModel`.
Example definition:
.. code-block:: python
from pydantic import Field
class MyAssetConfig(Config):
my_str: str = "my_default_string"
my_int_list: List[int]
my_bool_with_metadata: bool = Field(default=False, description="A bool field")
Example usage:
.. code-block:: python
@asset
def asset_with_config(config: MyAssetConfig):
assert config.my_str == "my_default_string"
assert config.my_int_list == [1, 2, 3]
assert config.my_bool_with_metadata == False
asset_with_config(MyAssetConfig(my_int_list=[1, 2, 3], my_bool_with_metadata=True))
"""
def __init__(self, **config_dict) -> None:
"""This constructor is overridden to handle any remapping of raw config dicts to
the appropriate config classes. For example, discriminated unions are represented
in Dagster config as dicts with a single key, which is the discriminator value.
"""
# In order to respect aliases on pydantic fields, we need to keep track of
# both the the field_key which is they key for the field on the pydantic model
# and the config_key which is the post alias resolution name which is
# the key for that field in the incoming config_dict
modified_data_by_config_key = {}
field_info_by_config_key = {
field.alias if field.alias else field_key: (field_key, field)
for field_key, field in model_fields(self).items()
}
for config_key, value in config_dict.items():
field_info = field_info_by_config_key.get(config_key)
field = None
field_key = config_key
if field_info:
field_key, field = field_info
if field and field.discriminator:
nested_dict = value
discriminator_key = check.not_none(field.discriminator)
if isinstance(value, Config):
nested_dict = _discriminated_union_config_dict_to_selector_config_dict(
discriminator_key,
value._get_non_default_public_field_values(), # noqa: SLF001
)
nested_items = list(check.is_dict(nested_dict).items())
check.invariant(
len(nested_items) == 1,
"Discriminated union must have exactly one key",
)
discriminated_value, nested_values = nested_items[0]
modified_data_by_config_key[config_key] = {
**nested_values,
discriminator_key: discriminated_value,
}
# If the passed value matches the name of an expected Enum value, convert it to the value
elif (
field
and safe_is_subclass(field.annotation, Enum)
and value in field.annotation.__members__
and value not in [member.value for member in field.annotation] # type: ignore
):
modified_data_by_config_key[config_key] = field.annotation.__members__[value].value
elif field and safe_is_subclass(field.annotation, Config) and isinstance(value, dict):
modified_data_by_config_key[field_key] = (
field.annotation._get_non_default_public_field_values_cls( # noqa: SLF001
value
)
)
else:
modified_data_by_config_key[config_key] = value
for field_key, field in model_fields(self).items():
config_key = field.alias if field.alias else field_key
if field.is_required() and config_key not in modified_data_by_config_key:
modified_data_by_config_key[config_key] = (
field.default if field.default != PydanticUndefined else None
)
super().__init__(**modified_data_by_config_key)
modified_data_by_field_key = {}
for config_key, value in modified_data_by_config_key.items():
field_info = field_info_by_config_key.get(config_key)
field_key = field_info[0] if field_info else config_key
modified_data_by_field_key[field_key] = value
self.__dict__ = ensure_env_vars_set_post_init(self.__dict__, modified_data_by_field_key)
def _convert_to_config_dictionary(self) -> Mapping[str, Any]:
"""Converts this Config object to a Dagster config dictionary, in the same format as the dictionary
accepted as run config or as YAML in the launchpad.
Inner fields are recursively converted to dictionaries, meaning nested config objects
or EnvVars will be converted to the appropriate dictionary representation.
"""
public_fields = self._get_non_default_public_field_values()
return {
k: _config_value_to_dict_representation(model_fields(self).get(k), v)
for k, v in public_fields.items()
}
@classmethod
def _get_non_default_public_field_values_cls(cls, items: Dict[str, Any]) -> Mapping[str, Any]:
"""Returns a dictionary representation of this config object,
ignoring any private fields, and any defaulted fields which are equal to the default value.
Inner fields are returned as-is in the dictionary,
meaning any nested config objects will be returned as config objects, not dictionaries.
"""
output = {}
for key, value in items.items():
if _is_field_internal(key):
continue
field = model_fields(cls).get(key)
if field:
if (
not is_literal(field.annotation)
and not safe_is_subclass(field.annotation, Enum)
and value == field.default
):
continue
resolved_field_name = field.alias or key
output[resolved_field_name] = value
else:
output[key] = value
return output
def _get_non_default_public_field_values(self) -> Mapping[str, Any]:
return self.__class__._get_non_default_public_field_values_cls(dict(self)) # noqa: SLF001
@classmethod
def to_config_schema(cls) -> DefinitionConfigSchema:
"""Converts the config structure represented by this class into a DefinitionConfigSchema."""
return DefinitionConfigSchema(infer_schema_from_config_class(cls))
@classmethod
def to_fields_dict(cls) -> Dict[str, DagsterField]:
"""Converts the config structure represented by this class into a dictionary of dagster.Fields.
This is useful when interacting with legacy code that expects a dictionary of fields but you
want the source of truth to be a config class.
"""
return cast(Shape, cls.to_config_schema().as_field().config_type).fields
def _discriminated_union_config_dict_to_selector_config_dict(
discriminator_key: str, config_dict: Mapping[str, Any]
):
"""Remaps a config dictionary which is a member of a discriminated union to
the appropriate structure for a Dagster config selector.
A discriminated union with key "my_key" and value "my_value" will be represented
as {"my_key": "my_value", "my_field": "my_field_value"}. When converted to a selector,
this should be represented as {"my_value": {"my_field": "my_field_value"}}.
"""
updated_dict = dict(config_dict)
discriminator_value = updated_dict.pop(discriminator_key)
wrapped_dict = {discriminator_value: updated_dict}
return wrapped_dict
def _config_value_to_dict_representation(field: Optional[ModelFieldCompat], value: Any):
"""Converts a config value to a dictionary representation. If a field is provided, it will be used
to determine the appropriate dictionary representation in the case of discriminated unions.
"""
from dagster._config.field_utils import env_var_to_config_dict, is_dagster_env_var
if isinstance(value, dict):
return {k: _config_value_to_dict_representation(None, v) for k, v in value.items()}
elif isinstance(value, list):
return [_config_value_to_dict_representation(None, v) for v in value]
elif is_dagster_env_var(value):
return env_var_to_config_dict(value)
if isinstance(value, Config):
if field and field.discriminator:
return {
k: v
for k, v in _discriminated_union_config_dict_to_selector_config_dict(
field.discriminator,
value._convert_to_config_dictionary(), # noqa: SLF001
).items()
}
else:
return {k: v for k, v in value._convert_to_config_dictionary().items()} # noqa: SLF001
elif isinstance(value, Enum):
return value.name
return value
[docs]
class PermissiveConfig(Config):
"""Subclass of :py:class:`Config` that allows arbitrary extra fields. This is useful for
config classes which may have open-ended inputs.
Example definition:
.. code-block:: python
class MyPermissiveOpConfig(PermissiveConfig):
my_explicit_parameter: bool
my_other_explicit_parameter: str
Example usage:
.. code-block:: python
@op
def op_with_config(config: MyPermissiveOpConfig):
assert config.my_explicit_parameter == True
assert config.my_other_explicit_parameter == "foo"
assert config.dict().get("my_implicit_parameter") == "bar"
op_with_config(
MyPermissiveOpConfig(
my_explicit_parameter=True,
my_other_explicit_parameter="foo",
my_implicit_parameter="bar"
)
)
"""
# Pydantic config for this class
# Cannot use kwargs for base class as this is not support for pydantic<1.8
model_config = ConfigDict(extra="allow")
def infer_schema_from_config_class(
model_cls: Type["Config"],
description: Optional[str] = None,
fields_to_omit: Optional[Set[str]] = None,
) -> DagsterField:
from dagster._config.pythonic_config.config import Config
from dagster._config.pythonic_config.resource import (
ConfigurableResourceFactory,
_is_annotated_as_resource_type,
)
"""Parses a structured config class and returns a corresponding Dagster config Field."""
fields_to_omit = fields_to_omit or set()
check.param_invariant(
safe_is_subclass(model_cls, Config),
"Config type annotation must inherit from dagster.Config",
)
fields: Dict[str, DagsterField] = {}
for key, pydantic_field_info in model_fields(model_cls).items():
if _is_annotated_as_resource_type(
pydantic_field_info.annotation, pydantic_field_info.metadata
):
continue
resolved_field_name = pydantic_field_info.alias if pydantic_field_info.alias else key
if key not in fields_to_omit:
if isinstance(pydantic_field_info.default, DagsterField):
raise DagsterInvalidDefinitionError(
"Using 'dagster.Field' is not supported within a Pythonic config or resource"
" definition. 'dagster.Field' should only be used in legacy Dagster config"
" schemas. Did you mean to use 'pydantic.Field' instead?"
)
try:
fields[resolved_field_name] = _convert_pydantic_field(pydantic_field_info)
except DagsterInvalidConfigDefinitionError as e:
raise DagsterInvalidPythonicConfigDefinitionError(
config_class=model_cls,
field_name=key,
invalid_type=e.current_value,
is_resource=model_cls is not None
and safe_is_subclass(model_cls, ConfigurableResourceFactory),
)
shape_cls = Permissive if model_config(model_cls).get("extra") == "allow" else Shape
docstring = model_cls.__doc__.strip() if model_cls.__doc__ else None
return DagsterField(config=shape_cls(fields), description=description or docstring)