Ask AI

Great Expectations (dagster-ge)

dagster_ge.ge_validation_op_factory(name, datasource_name, suite_name, validation_operator_name=None, input_dagster_type=<dagster._core.types.dagster_type.DagsterType object>, batch_kwargs=None)[source]

Generates ops for interacting with GE.

Parameters:
  • name (str) – the name of the op

  • datasource_name (str) – the name of your DataSource, see your great_expectations.yml

  • suite_name (str) – the name of your expectation suite, see your great_expectations.yml

  • validation_operator_name (Optional[str]) – what validation operator to run – defaults to None, which generates an ephemeral validator. If you want to save data docs, use ‘action_list_operator’. See https://legacy.docs.greatexpectations.io/en/0.12.1/reference/core_concepts/validation_operators_and_actions.html#

  • input_dagster_type (DagsterType) – the Dagster type used to type check the input to the op. Defaults to dagster_pandas.DataFrame.

  • batch_kwargs (Optional[dict]) – overrides the batch_kwargs parameter when calling the ge_data_context’s get_batch method. Defaults to {“dataset”: dataset}, where dataset is the input to the generated op.

Returns:

An op that takes in a set of data and yields both an expectation with relevant metadata and an output with all the metadata (for user processing)